Properties

Label 4-1408e2-1.1-c1e2-0-12
Degree $4$
Conductor $1982464$
Sign $1$
Analytic cond. $126.403$
Root an. cond. $3.35304$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 4·5-s + 6·9-s − 2·11-s + 16·15-s + 8·23-s + 2·25-s − 4·27-s − 8·33-s + 20·37-s + 24·45-s − 16·47-s + 2·49-s − 12·53-s − 8·55-s + 28·59-s + 20·67-s + 32·69-s + 24·71-s + 8·75-s − 37·81-s − 4·89-s − 4·97-s − 12·99-s − 8·103-s + 80·111-s + 4·113-s + ⋯
L(s)  = 1  + 2.30·3-s + 1.78·5-s + 2·9-s − 0.603·11-s + 4.13·15-s + 1.66·23-s + 2/5·25-s − 0.769·27-s − 1.39·33-s + 3.28·37-s + 3.57·45-s − 2.33·47-s + 2/7·49-s − 1.64·53-s − 1.07·55-s + 3.64·59-s + 2.44·67-s + 3.85·69-s + 2.84·71-s + 0.923·75-s − 4.11·81-s − 0.423·89-s − 0.406·97-s − 1.20·99-s − 0.788·103-s + 7.59·111-s + 0.376·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1982464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1982464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1982464\)    =    \(2^{14} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(126.403\)
Root analytic conductor: \(3.35304\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1982464,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.523182338\)
\(L(\frac12)\) \(\approx\) \(7.523182338\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.083867587292064042476745549264, −7.56807245302446849388411409083, −6.78571919296342801026858814862, −6.73107643226946083552289919888, −5.98411845567390687759228409904, −5.64130249043000575312616744005, −5.20699803882837226838184764640, −4.74417671255472056386371788974, −3.95581538224482392108768250754, −3.56276783709589056726776122484, −3.01367372185754308448342171488, −2.46608091328452001690059553408, −2.36895617399553888783865863574, −1.85344569828924861759779421426, −0.977853460820428219258604150547, 0.977853460820428219258604150547, 1.85344569828924861759779421426, 2.36895617399553888783865863574, 2.46608091328452001690059553408, 3.01367372185754308448342171488, 3.56276783709589056726776122484, 3.95581538224482392108768250754, 4.74417671255472056386371788974, 5.20699803882837226838184764640, 5.64130249043000575312616744005, 5.98411845567390687759228409904, 6.73107643226946083552289919888, 6.78571919296342801026858814862, 7.56807245302446849388411409083, 8.083867587292064042476745549264

Graph of the $Z$-function along the critical line