Properties

Label 8-133e4-1.1-c0e4-0-0
Degree $8$
Conductor $312900721$
Sign $1$
Analytic cond. $1.94104\times 10^{-5}$
Root an. cond. $0.257634$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 6·8-s − 9-s + 9·16-s + 2·18-s − 2·23-s − 25-s + 2·29-s − 12·32-s − 3·36-s − 2·43-s + 4·46-s − 2·49-s + 2·50-s + 2·53-s − 4·58-s + 18·64-s − 2·67-s + 2·71-s + 6·72-s − 2·79-s + 81-s + 4·86-s − 6·92-s + 4·98-s − 3·100-s + ⋯
L(s)  = 1  − 2·2-s + 3·4-s − 6·8-s − 9-s + 9·16-s + 2·18-s − 2·23-s − 25-s + 2·29-s − 12·32-s − 3·36-s − 2·43-s + 4·46-s − 2·49-s + 2·50-s + 2·53-s − 4·58-s + 18·64-s − 2·67-s + 2·71-s + 6·72-s − 2·79-s + 81-s + 4·86-s − 6·92-s + 4·98-s − 3·100-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(7^{4} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(1.94104\times 10^{-5}\)
Root analytic conductor: \(0.257634\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 7^{4} \cdot 19^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.06006101219\)
\(L(\frac12)\) \(\approx\) \(0.06006101219\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
good2$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
3$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
5$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
11$C_2$ \( ( 1 + T^{2} )^{4} \)
13$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
17$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
23$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
29$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
37$C_2$ \( ( 1 + T^{2} )^{4} \)
41$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
47$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
53$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
59$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
61$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
67$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
71$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
73$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
79$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
89$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
97$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.17226644292946765125862866461, −9.656034681280208466440361484716, −9.285612671148327135423610248964, −9.239053692940039465874360737458, −9.180058689512610881312014020254, −8.456438373398409426979478515721, −8.385138826224672845299114718856, −8.159577564624528159149562240696, −8.142770115043182775628926715441, −7.75107999141018477134556915583, −7.19808119128069739656818853077, −6.86187592916030067191584686767, −6.43424301154797598532413666283, −6.40277395728024042605463354872, −6.30950169152618461941082530168, −5.53890719816988880382030444731, −5.49083214680502202454568705016, −5.43296173482710314264454112292, −4.42935228777675251968558759391, −3.99891080945266620293898225975, −3.33065637603436017905043258494, −3.20872019042703496496577222133, −2.71044367256582579166473223063, −2.33705050726053221832002406374, −1.69683603271289636518353803388, 1.69683603271289636518353803388, 2.33705050726053221832002406374, 2.71044367256582579166473223063, 3.20872019042703496496577222133, 3.33065637603436017905043258494, 3.99891080945266620293898225975, 4.42935228777675251968558759391, 5.43296173482710314264454112292, 5.49083214680502202454568705016, 5.53890719816988880382030444731, 6.30950169152618461941082530168, 6.40277395728024042605463354872, 6.43424301154797598532413666283, 6.86187592916030067191584686767, 7.19808119128069739656818853077, 7.75107999141018477134556915583, 8.142770115043182775628926715441, 8.159577564624528159149562240696, 8.385138826224672845299114718856, 8.456438373398409426979478515721, 9.180058689512610881312014020254, 9.239053692940039465874360737458, 9.285612671148327135423610248964, 9.656034681280208466440361484716, 10.17226644292946765125862866461

Graph of the $Z$-function along the critical line