The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000
| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 196.a1 |
196a2 |
196.a |
196a |
$2$ |
$3$ |
\( 2^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 3$ |
2.2.0.1, 9.12.0.2 |
2Cn, 3B |
$252$ |
$864$ |
$28$ |
$0.258106352$ |
$1$ |
|
$4$ |
$18$ |
$-0.205035$ |
$406749952$ |
$0.99897$ |
$5.01848$ |
$[0, -1, 0, -142, 701]$ |
\(y^2=x^3-x^2-142x+701\) |
2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 9.12.0.b.1, 12.16.0.a.1, $\ldots$ |
$[(7, 1)]$ |
$1$ |
| 196.a2 |
196a1 |
196.a |
196a |
$2$ |
$3$ |
\( 2^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 3$ |
2.2.0.1, 9.12.0.2 |
2Cn, 3B |
$252$ |
$864$ |
$28$ |
$0.086035450$ |
$1$ |
|
$8$ |
$6$ |
$-0.754341$ |
$1792$ |
$0.89152$ |
$2.68192$ |
$[0, -1, 0, -2, 1]$ |
\(y^2=x^3-x^2-2x+1\) |
2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 9.12.0.b.1, 12.16.0.a.2, $\ldots$ |
$[(0, 1)]$ |
$1$ |
| 196.b1 |
196b2 |
196.b |
196b |
$2$ |
$3$ |
\( 2^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 3$ |
4.4.0.2, 9.24.0.4 |
2Cn, 3B.1.2 |
$252$ |
$864$ |
$28$ |
$1$ |
$1$ |
|
$0$ |
$126$ |
$0.767920$ |
$406749952$ |
$0.99897$ |
$7.23053$ |
$[0, 1, 0, -6974, -226507]$ |
\(y^2=x^3+x^2-6974x-226507\) |
2.2.0.a.1, 3.8.0-3.a.1.1, 4.4.0-2.a.1.1, 6.16.0-6.a.1.1, 9.24.0-9.b.1.1, $\ldots$ |
$[ ]$ |
$1$ |
| 196.b2 |
196b1 |
196.b |
196b |
$2$ |
$3$ |
\( 2^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 7^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 3$ |
4.4.0.2, 9.24.0.2 |
2Cn, 3B.1.1 |
$252$ |
$864$ |
$28$ |
$1$ |
$1$ |
|
$2$ |
$42$ |
$0.218614$ |
$1792$ |
$0.89152$ |
$4.89397$ |
$[0, 1, 0, -114, -127]$ |
\(y^2=x^3+x^2-114x-127\) |
2.2.0.a.1, 3.8.0-3.a.1.2, 4.4.0-2.a.1.1, 6.16.0-6.a.1.2, 9.24.0-9.b.1.2, $\ldots$ |
$[ ]$ |
$1$ |
Download
displayed columns for
results