| Label | Class | Class size | Class degree | Base field | Field degree | Field signature | Conductor | Conductor norm | Discriminant norm | Root analytic conductor | Bad primes | Rank | Torsion | CM | CM | Sato-Tate | $\Q$-curve | Base change | Semistable | Potentially good | Nonmax $\ell$ | mod-$\ell$ images | $Ш_{\textrm{an}}$ | Tamagawa | Regulator | Period | Leading coeff | j-invariant | Weierstrass coefficients | Weierstrass equation | 
      
      
              | 81.1-CMa1 | 81.1-CMa | $2$ | $3$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 81.1 | \(  3^{4}  \) | \(  3^{6}  \) | $0.46432$ | $(-2a+1)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{yes}$ | $-3$ | $\mathrm{U}(1)$ | ✓ | ✓ |  | ✓ | $3$ | 3Cs.1.1[2] | $1$ | \( 3 \) | $1$ | $8.108628264$ | 0.346779163 | \( 0 \) | \( \bigl[0\) , \(  0\) , \(  1\) , \(  0\) , \(  0\bigr] \) | ${y}^2+{y}={x}^{3}$ | 
      
              | 324.1-a5 | 324.1-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 324.1 | \(  2^{2} \cdot 3^{4}  \) | \(  2^{6} \cdot 3^{6}  \) | $0.65665$ | $(-2a+1), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ | ✓ | ✓ |  |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{2} \) | $1$ | $5.635135226$ | 0.722988186 | \( \frac{9261}{8} \) | \( \bigl[a + 1\) , \(  0\) , \(  1\) , \(  a - 2\) , \(  -1\bigr] \) | ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a-2\right){x}-1$ | 
      
              | 361.2-a4 | 361.2-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 361.2 | \(  19^{2}  \) | \(  19^{6}  \) | $0.67465$ | $(-5a+3), (-5a+2)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ | ✓ | ✓ | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{2} \) | $0.677900606$ | $2.805927025$ | 0.488089257 | \( -\frac{89915392}{6859} \) | \( \bigl[0\) , \(  -a\) , \(  1\) , \(  -9 a + 9\) , \(  -15\bigr] \) | ${y}^2+{y}={x}^{3}-a{x}^{2}+\left(-9a+9\right){x}-15$ | 
      
              | 532.2-b3 | 532.2-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 532.2 | \(  2^{2} \cdot 7 \cdot 19  \) | \(  2^{6} \cdot 7^{3} \cdot 19^{3}  \) | $0.74332$ | $(-3a+1), (-5a+2), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $1$ | $2.514297545$ | 0.967753576 | \( -\frac{27421842825}{4705274} a + \frac{371136361913}{18821096} \) | \( \bigl[a + 1\) , \(  a - 1\) , \(  a + 1\) , \(  4 a - 15\) , \(  3 a - 17\bigr] \) | ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(4a-15\right){x}+3a-17$ | 
      
              | 532.3-b3 | 532.3-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 532.3 | \(  2^{2} \cdot 7 \cdot 19  \) | \(  2^{6} \cdot 7^{3} \cdot 19^{3}  \) | $0.74332$ | $(3a-2), (-5a+3), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $1$ | $2.514297545$ | 0.967753576 | \( \frac{27421842825}{4705274} a + \frac{261448990613}{18821096} \) | \( \bigl[a + 1\) , \(  1\) , \(  a\) , \(  14 a - 5\) , \(  -4 a - 13\bigr] \) | ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+{x}^{2}+\left(14a-5\right){x}-4a-13$ | 
      
              | 676.2-b2 | 676.2-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 676.2 | \(  2^{2} \cdot 13^{2}  \) | \(  2^{6} \cdot 13^{6}  \) | $0.78920$ | $(-4a+1), (4a-3), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ | ✓ | ✓ | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $1$ | $2.690802392$ | 1.035690323 | \( -\frac{10218313}{17576} \) | \( \bigl[a + 1\) , \(  -a\) , \(  1\) , \(  -5 a + 4\) , \(  -8\bigr] \) | ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-5a+4\right){x}-8$ | 
      
              | 756.1-a4 | 756.1-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 756.1 | \(  2^{2} \cdot 3^{3} \cdot 7  \) | \(  2^{6} \cdot 3^{9} \cdot 7^{3}  \) | $0.81158$ | $(-2a+1), (-3a+1), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  |  |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $1$ | $2.554307252$ | 0.983153319 | \( -\frac{1598955}{686} a + \frac{7343733}{2744} \) | \( \bigl[1\) , \(  -1\) , \(  1\) , \(  9 a - 5\) , \(  -6 a - 4\bigr] \) | ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(9a-5\right){x}-6a-4$ | 
      
              | 756.2-a4 | 756.2-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 756.2 | \(  2^{2} \cdot 3^{3} \cdot 7  \) | \(  2^{6} \cdot 3^{9} \cdot 7^{3}  \) | $0.81158$ | $(-2a+1), (3a-2), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  |  |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $1$ | $2.554307252$ | 0.983153319 | \( \frac{1598955}{686} a + \frac{947913}{2744} \) | \( \bigl[1\) , \(  -1\) , \(  1\) , \(  -9 a + 4\) , \(  6 a - 10\bigr] \) | ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-9a+4\right){x}+6a-10$ | 
      
              | 868.2-b3 | 868.2-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 868.2 | \(  2^{2} \cdot 7 \cdot 31  \) | \(  2^{6} \cdot 7^{6} \cdot 31^{3}  \) | $0.84010$ | $(-3a+1), (6a-5), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 2 \cdot 3^{3} \) | $1$ | $1.491140745$ | 1.147880680 | \( -\frac{27687863199645}{14019525436} a - \frac{39320031191761}{28039050872} \) | \( \bigl[a + 1\) , \(  1\) , \(  a\) , \(  -9 a + 27\) , \(  -49 a + 6\bigr] \) | ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-9a+27\right){x}-49a+6$ | 
      
              | 868.3-b3 | 868.3-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 868.3 | \(  2^{2} \cdot 7 \cdot 31  \) | \(  2^{6} \cdot 7^{6} \cdot 31^{3}  \) | $0.84010$ | $(3a-2), (-6a+1), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 2 \cdot 3^{3} \) | $1$ | $1.491140745$ | 1.147880680 | \( \frac{27687863199645}{14019525436} a - \frac{94695757591051}{28039050872} \) | \( \bigl[a + 1\) , \(  a - 1\) , \(  a + 1\) , \(  -28 a + 8\) , \(  48 a - 43\bigr] \) | ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-28a+8\right){x}+48a-43$ | 
      
              | 876.1-a5 | 876.1-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 876.1 | \(  2^{2} \cdot 3 \cdot 73  \) | \(  2^{18} \cdot 3^{3} \cdot 73^{3}  \) | $0.84203$ | $(-2a+1), (-9a+1), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{4} \) | $1$ | $0.987284640$ | 1.140018106 | \( -\frac{88859939430115}{896295168} a + \frac{105897127856527}{1792590336} \) | \( \bigl[a + 1\) , \(  a - 1\) , \(  a + 1\) , \(  -19 a - 100\) , \(  36 a + 423\bigr] \) | ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-19a-100\right){x}+36a+423$ | 
      
              | 876.2-a5 | 876.2-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 876.2 | \(  2^{2} \cdot 3 \cdot 73  \) | \(  2^{18} \cdot 3^{3} \cdot 73^{3}  \) | $0.84203$ | $(-2a+1), (9a-8), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{4} \) | $1$ | $0.987284640$ | 1.140018106 | \( \frac{88859939430115}{896295168} a - \frac{71822751003703}{1792590336} \) | \( \bigl[a + 1\) , \(  1\) , \(  a\) , \(  99 a + 18\) , \(  -37 a + 460\bigr] \) | ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+{x}^{2}+\left(99a+18\right){x}-37a+460$ | 
      
              | 1036.2-a4 | 1036.2-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 1036.2 | \(  2^{2} \cdot 7 \cdot 37  \) | \(  2^{6} \cdot 7^{3} \cdot 37^{3}  \) | $0.87809$ | $(-3a+1), (-7a+3), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $1$ | $2.083349060$ | 0.801881427 | \( \frac{506445552405}{69495916} a - \frac{3543562947041}{138991832} \) | \( \bigl[a\) , \(  a + 1\) , \(  0\) , \(  9 a - 22\) , \(  16 a - 47\bigr] \) | ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(9a-22\right){x}+16a-47$ | 
      
              | 1036.3-a4 | 1036.3-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 1036.3 | \(  2^{2} \cdot 7 \cdot 37  \) | \(  2^{6} \cdot 7^{3} \cdot 37^{3}  \) | $0.87809$ | $(3a-2), (-7a+4), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $1$ | $2.083349060$ | 0.801881427 | \( -\frac{506445552405}{69495916} a - \frac{2530671842231}{138991832} \) | \( \bigl[1\) , \(  -a - 1\) , \(  a\) , \(  22 a - 8\) , \(  -30 a - 9\bigr] \) | ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(22a-8\right){x}-30a-9$ | 
      
              | 1204.1-b3 | 1204.1-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 1204.1 | \(  2^{2} \cdot 7 \cdot 43  \) | \(  2^{12} \cdot 7^{3} \cdot 43^{3}  \) | $0.91171$ | $(-3a+1), (-7a+1), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 2 \cdot 3^{3} \) | $1$ | $1.648651125$ | 1.269132228 | \( -\frac{405076613535}{436334416} a + \frac{1385286605803}{1745337664} \) | \( \bigl[a\) , \(  -a - 1\) , \(  0\) , \(  14 a - 14\) , \(  20 a + 12\bigr] \) | ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(14a-14\right){x}+20a+12$ | 
      
              | 1204.4-b3 | 1204.4-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 1204.4 | \(  2^{2} \cdot 7 \cdot 43  \) | \(  2^{12} \cdot 7^{3} \cdot 43^{3}  \) | $0.91171$ | $(3a-2), (7a-6), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 2 \cdot 3^{3} \) | $1$ | $1.648651125$ | 1.269132228 | \( \frac{405076613535}{436334416} a - \frac{235019848337}{1745337664} \) | \( \bigl[1\) , \(  a + 1\) , \(  a\) , \(  15 a - 13\) , \(  -19 a + 18\bigr] \) | ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(15a-13\right){x}-19a+18$ | 
      
              | 1225.2-a3 | 1225.2-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 1225.2 | \(  5^{2} \cdot 7^{2}  \) | \(  5^{6} \cdot 7^{6}  \) | $0.91566$ | $(-3a+1), (3a-2), (5)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ | ✓ | ✓ | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $1$ | $2.324925606$ | 0.894864283 | \( \frac{71991296}{42875} \) | \( \bigl[0\) , \(  -a\) , \(  1\) , \(  9 a - 9\) , \(  1\bigr] \) | ${y}^2+{y}={x}^{3}-a{x}^{2}+\left(9a-9\right){x}+1$ | 
      
              | 1369.2-b3 | 1369.2-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 1369.2 | \(  37^{2}  \) | \(  37^{6}  \) | $0.94146$ | $(-7a+4), (-7a+3)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ | ✓ | ✓ | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{2} \) | $2.174309583$ | $1.924082382$ | 1.073499626 | \( \frac{1404928000}{50653} \) | \( \bigl[0\) , \(  a - 1\) , \(  1\) , \(  23 a\) , \(  -50\bigr] \) | ${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+23a{x}-50$ | 
      
              | 1404.1-b3 | 1404.1-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 1404.1 | \(  2^{2} \cdot 3^{3} \cdot 13  \) | \(  2^{12} \cdot 3^{9} \cdot 13^{3}  \) | $0.94742$ | $(-2a+1), (-4a+1), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  |  |  | $3$ | 3Cs.1.1[2] | $1$ | \( 2 \cdot 3^{3} \) | $1$ | $1.480078951$ | 1.139365308 | \( -\frac{475773585}{70304} a + \frac{788110071}{140608} \) | \( \bigl[1\) , \(  -1\) , \(  0\) , \(  -21 a + 33\) , \(  -21 a - 48\bigr] \) | ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-21a+33\right){x}-21a-48$ | 
      
              | 1404.2-b3 | 1404.2-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 1404.2 | \(  2^{2} \cdot 3^{3} \cdot 13  \) | \(  2^{12} \cdot 3^{9} \cdot 13^{3}  \) | $0.94742$ | $(-2a+1), (4a-3), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  |  |  | $3$ | 3Cs.1.1[2] | $1$ | \( 2 \cdot 3^{3} \) | $1$ | $1.480078951$ | 1.139365308 | \( \frac{475773585}{70304} a - \frac{163437099}{140608} \) | \( \bigl[1\) , \(  -1\) , \(  0\) , \(  21 a + 12\) , \(  21 a - 69\bigr] \) | ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(21a+12\right){x}+21a-69$ | 
      
              | 1444.2-b5 | 1444.2-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 1444.2 | \(  2^{2} \cdot 19^{2}  \) | \(  2^{18} \cdot 19^{6}  \) | $0.95409$ | $(-5a+3), (-5a+2), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ | ✓ | ✓ | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{4} \) | $1$ | $1.136863399$ | 1.312736779 | \( \frac{94196375}{3511808} \) | \( \bigl[a\) , \(  0\) , \(  1\) , \(  -10 a\) , \(  90\bigr] \) | ${y}^2+a{x}{y}+{y}={x}^{3}-10a{x}+90$ | 
      
              | 1612.1-a3 | 1612.1-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 1612.1 | \(  2^{2} \cdot 13 \cdot 31  \) | \(  2^{6} \cdot 13^{3} \cdot 31^{3}  \) | $0.98071$ | $(-4a+1), (-6a+1), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $1$ | $2.125838984$ | 0.818235806 | \( -\frac{312668878725}{261803308} a + \frac{1517634305173}{523606616} \) | \( \bigl[1\) , \(  a + 1\) , \(  a + 1\) , \(  10 a - 13\) , \(  14 a - 15\bigr] \) | ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(10a-13\right){x}+14a-15$ | 
      
              | 1612.4-a3 | 1612.4-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 1612.4 | \(  2^{2} \cdot 13 \cdot 31  \) | \(  2^{6} \cdot 13^{3} \cdot 31^{3}  \) | $0.98071$ | $(4a-3), (6a-5), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $1$ | $2.125838984$ | 0.818235806 | \( \frac{312668878725}{261803308} a + \frac{892296547723}{523606616} \) | \( \bigl[a\) , \(  -a - 1\) , \(  1\) , \(  13 a - 9\) , \(  -18 a + 12\bigr] \) | ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(13a-9\right){x}-18a+12$ | 
      
              | 2268.1-a1 | 2268.1-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 2268.1 | \(  2^{2} \cdot 3^{4} \cdot 7  \) | \(  2^{6} \cdot 3^{6} \cdot 7^{3}  \) | $1.06810$ | $(-2a+1), (-3a+1), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  |  |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $1$ | $3.432415362$ | 1.321137289 | \( \frac{1192725}{1372} a - \frac{2098143}{2744} \) | \( \bigl[1\) , \(  -1\) , \(  0\) , \(  -3 a\) , \(  -3 a + 3\bigr] \) | ${y}^2+{x}{y}={x}^{3}-{x}^{2}-3a{x}-3a+3$ | 
      
              | 2268.2-a1 | 2268.2-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 2268.2 | \(  2^{2} \cdot 3^{4} \cdot 7  \) | \(  2^{6} \cdot 3^{6} \cdot 7^{3}  \) | $1.06810$ | $(-2a+1), (3a-2), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  |  |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $1$ | $3.432415362$ | 1.321137289 | \( -\frac{1192725}{1372} a + \frac{287307}{2744} \) | \( \bigl[1\) , \(  -1\) , \(  0\) , \(  3 a - 3\) , \(  3 a\bigr] \) | ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(3a-3\right){x}+3a$ | 
      
              | 2457.1-a2 | 2457.1-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 2457.1 | \(  3^{3} \cdot 7 \cdot 13  \) | \(  3^{9} \cdot 7^{3} \cdot 13^{3}  \) | $1.08968$ | $(-2a+1), (-3a+1), (-4a+1)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  |  |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $1$ | $1.858636986$ | 0.715389709 | \( \frac{2895052800}{753571} a - \frac{2546368512}{753571} \) | \( \bigl[0\) , \(  0\) , \(  1\) , \(  18 a - 12\) , \(  -30 a + 6\bigr] \) | ${y}^2+{y}={x}^{3}+\left(18a-12\right){x}-30a+6$ | 
      
              | 2457.4-a2 | 2457.4-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 2457.4 | \(  3^{3} \cdot 7 \cdot 13  \) | \(  3^{9} \cdot 7^{3} \cdot 13^{3}  \) | $1.08968$ | $(-2a+1), (3a-2), (4a-3)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  |  |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $1$ | $1.858636986$ | 0.715389709 | \( -\frac{2895052800}{753571} a + \frac{348684288}{753571} \) | \( \bigl[0\) , \(  0\) , \(  1\) , \(  -18 a + 6\) , \(  30 a - 24\bigr] \) | ${y}^2+{y}={x}^{3}+\left(-18a+6\right){x}+30a-24$ | 
      
              | 3969.2-a3 | 3969.2-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 3969.2 | \(  3^{4} \cdot 7^{2}  \) | \(  3^{6} \cdot 7^{6}  \) | $1.22848$ | $(-2a+1), (-3a+1), (3a-2)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ | ✓ | ✓ |  |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $0.621081184$ | $2.944550565$ | 1.407814708 | \( \frac{884736}{343} \) | \( \bigl[0\) , \(  0\) , \(  1\) , \(  -6\) , \(  3\bigr] \) | ${y}^2+{y}={x}^{3}-6{x}+3$ | 
      
              | 5929.2-b2 | 5929.2-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 5929.2 | \(  7^{2} \cdot 11^{2}  \) | \(  7^{12} \cdot 11^{6}  \) | $1.35814$ | $(-3a+1), (3a-2), (11)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ | ✓ | ✓ | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 2^{2} \cdot 3^{3} \) | $1$ | $0.601329074$ | 0.925806674 | \( -\frac{13278380032}{156590819} \) | \( \bigl[0\) , \(  a - 1\) , \(  1\) , \(  49 a\) , \(  600\bigr] \) | ${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+49a{x}+600$ | 
      
              | 6916.1-b5 | 6916.1-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 6916.1 | \(  2^{2} \cdot 7 \cdot 13 \cdot 19  \) | \(  2^{18} \cdot 7^{3} \cdot 13^{3} \cdot 19^{3}  \) | $1.41144$ | $(-3a+1), (-4a+1), (-5a+3), (2)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{5} \) | $0.332310098$ | $0.756668267$ | 1.742086354 | \( -\frac{133973299354905}{330799583296} a + \frac{3018911930774371}{2646396666368} \) | \( \bigl[a + 1\) , \(  1\) , \(  a + 1\) , \(  -72 a + 4\) , \(  -147 a - 113\bigr] \) | ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-72a+4\right){x}-147a-113$ | 
      
              | 6916.8-b5 | 6916.8-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 6916.8 | \(  2^{2} \cdot 7 \cdot 13 \cdot 19  \) | \(  2^{18} \cdot 7^{3} \cdot 13^{3} \cdot 19^{3}  \) | $1.41144$ | $(3a-2), (4a-3), (-5a+2), (2)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{5} \) | $0.332310098$ | $0.756668267$ | 1.742086354 | \( \frac{133973299354905}{330799583296} a + \frac{1947125535935131}{2646396666368} \) | \( \bigl[a + 1\) , \(  a - 1\) , \(  a\) , \(  -5 a + 71\) , \(  146 a - 259\bigr] \) | ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-5a+71\right){x}+146a-259$ | 
      
              | 8281.5-a3 | 8281.5-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 8281.5 | \(  7^{2} \cdot 13^{2}  \) | \(  7^{6} \cdot 13^{6}  \) | $1.47645$ | $(-3a+1), (3a-2), (-4a+1), (4a-3)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ | ✓ | ✓ | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{4} \) | $0.353081695$ | $1.459953528$ | 1.190456688 | \( \frac{224755712}{753571} \) | \( \bigl[0\) , \(  -a\) , \(  1\) , \(  13 a - 13\) , \(  42\bigr] \) | ${y}^2+{y}={x}^{3}-a{x}^{2}+\left(13a-13\right){x}+42$ | 
      
              | 8463.3-b3 | 8463.3-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 8463.3 | \(  3 \cdot 7 \cdot 13 \cdot 31  \) | \(  3^{3} \cdot 7^{6} \cdot 13^{3} \cdot 31^{3}  \) | $1.48450$ | $(-2a+1), (-3a+1), (4a-3), (-6a+1)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 2 \cdot 3^{4} \) | $0.476468865$ | $0.880502832$ | 1.937736163 | \( \frac{61621848119705600}{69302019111507} a - \frac{20422185105719296}{69302019111507} \) | \( \bigl[0\) , \(  -a\) , \(  1\) , \(  27 a + 27\) , \(  -48 a + 206\bigr] \) | ${y}^2+{y}={x}^{3}-a{x}^{2}+\left(27a+27\right){x}-48a+206$ | 
      
              | 8463.6-b3 | 8463.6-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 8463.6 | \(  3 \cdot 7 \cdot 13 \cdot 31  \) | \(  3^{3} \cdot 7^{6} \cdot 13^{3} \cdot 31^{3}  \) | $1.48450$ | $(-2a+1), (3a-2), (-4a+1), (6a-5)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 2 \cdot 3^{4} \) | $0.476468865$ | $0.880502832$ | 1.937736163 | \( -\frac{61621848119705600}{69302019111507} a + \frac{41199663013986304}{69302019111507} \) | \( \bigl[0\) , \(  -a\) , \(  1\) , \(  -27 a - 27\) , \(  48 a + 158\bigr] \) | ${y}^2+{y}={x}^{3}-a{x}^{2}+\left(-27a-27\right){x}+48a+158$ | 
      
              | 9100.2-b2 | 9100.2-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 9100.2 | \(  2^{2} \cdot 5^{2} \cdot 7 \cdot 13  \) | \(  2^{6} \cdot 5^{6} \cdot 7^{3} \cdot 13^{3}  \) | $1.51168$ | $(-3a+1), (4a-3), (2), (5)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{4} \) | $0.580444204$ | $1.397012090$ | 1.872664632 | \( \frac{21985425981}{75357100} a - \frac{685267624981}{753571000} \) | \( \bigl[a\) , \(  -a - 1\) , \(  1\) , \(  -18 a\) , \(  -50 a + 31\bigr] \) | ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}-18a{x}-50a+31$ | 
      
              | 9100.3-b2 | 9100.3-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 9100.3 | \(  2^{2} \cdot 5^{2} \cdot 7 \cdot 13  \) | \(  2^{6} \cdot 5^{6} \cdot 7^{3} \cdot 13^{3}  \) | $1.51168$ | $(3a-2), (-4a+1), (2), (5)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{4} \) | $0.580444204$ | $1.397012090$ | 1.872664632 | \( -\frac{21985425981}{75357100} a - \frac{465413365171}{753571000} \) | \( \bigl[1\) , \(  a + 1\) , \(  a + 1\) , \(  a + 18\) , \(  68 a - 19\bigr] \) | ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a+18\right){x}+68a-19$ | 
      
              | 13588.1-b2 | 13588.1-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 13588.1 | \(  2^{2} \cdot 43 \cdot 79  \) | \(  2^{12} \cdot 43^{3} \cdot 79^{3}  \) | $1.67104$ | $(-7a+1), (10a-7), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 2 \cdot 3^{3} \) | $1$ | $0.908927007$ | 0.699692336 | \( -\frac{235980861541425}{627200828368} a + \frac{820884881398841}{2508803313472} \) | \( \bigl[a + 1\) , \(  1\) , \(  a + 1\) , \(  18 a + 21\) , \(  -174 a + 73\bigr] \) | ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(18a+21\right){x}-174a+73$ | 
      
              | 13588.4-b2 | 13588.4-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 13588.4 | \(  2^{2} \cdot 43 \cdot 79  \) | \(  2^{12} \cdot 43^{3} \cdot 79^{3}  \) | $1.67104$ | $(7a-6), (10a-3), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 2 \cdot 3^{3} \) | $1$ | $0.908927007$ | 0.699692336 | \( \frac{235980861541425}{627200828368} a - \frac{123038564766859}{2508803313472} \) | \( \bigl[a\) , \(  -a - 1\) , \(  0\) , \(  -18 a + 40\) , \(  192 a - 140\bigr] \) | ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-18a+40\right){x}+192a-140$ | 
      
              | 14364.1-c2 | 14364.1-c | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 14364.1 | \(  2^{2} \cdot 3^{3} \cdot 7 \cdot 19  \) | \(  2^{6} \cdot 3^{9} \cdot 7^{3} \cdot 19^{3}  \) | $1.69441$ | $(-2a+1), (-3a+1), (-5a+3), (2)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  |  |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{4} \) | $0.974358103$ | $1.271889024$ | 2.861983890 | \( -\frac{1753015875}{9410548} a + \frac{792457125}{18821096} \) | \( \bigl[a\) , \(  -a + 1\) , \(  0\) , \(  -3 a + 15\) , \(  45 a + 27\bigr] \) | ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-3a+15\right){x}+45a+27$ | 
      
              | 14364.4-c3 | 14364.4-c | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 14364.4 | \(  2^{2} \cdot 3^{3} \cdot 7 \cdot 19  \) | \(  2^{6} \cdot 3^{9} \cdot 7^{3} \cdot 19^{3}  \) | $1.69441$ | $(-2a+1), (3a-2), (-5a+2), (2)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  |  |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{4} \) | $0.974358103$ | $1.271889024$ | 2.861983890 | \( \frac{1753015875}{9410548} a - \frac{2713574625}{18821096} \) | \( \bigl[a\) , \(  -a + 1\) , \(  0\) , \(  12 a - 15\) , \(  -45 a + 72\bigr] \) | ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(12a-15\right){x}-45a+72$ | 
      
              | 15876.2-c2 | 15876.2-c | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 15876.2 | \(  2^{2} \cdot 3^{4} \cdot 7^{2}  \) | \(  2^{12} \cdot 3^{6} \cdot 7^{6}  \) | $1.73734$ | $(-2a+1), (-3a+1), (3a-2), (2)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ | ✓ | ✓ |  |  | $3$ | 3Cs.1.1[2] | $1$ | \( 2 \cdot 3^{4} \) | $0.434324480$ | $1.513949445$ | 3.037071679 | \( -\frac{5000211}{21952} \) | \( \bigl[a\) , \(  -a + 1\) , \(  1\) , \(  10 a\) , \(  -37\bigr] \) | ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+10a{x}-37$ | 
      
              | 15876.2-d3 | 15876.2-d | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 15876.2 | \(  2^{2} \cdot 3^{4} \cdot 7^{2}  \) | \(  2^{6} \cdot 3^{6} \cdot 7^{6}  \) | $1.73734$ | $(-2a+1), (-3a+1), (3a-2), (2)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ | ✓ | ✓ |  |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{4} \) | $1$ | $2.035709838$ | 2.350635247 | \( -\frac{7414875}{2744} \) | \( \bigl[a\) , \(  -a + 1\) , \(  0\) , \(  12 a\) , \(  24\bigr] \) | ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+12a{x}+24$ | 
      
              | 18300.1-b5 | 18300.1-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 18300.1 | \(  2^{2} \cdot 3 \cdot 5^{2} \cdot 61  \) | \(  2^{12} \cdot 3^{3} \cdot 5^{6} \cdot 61^{3}  \) | $1.80016$ | $(-2a+1), (-9a+5), (2), (5)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 2 \cdot 3^{4} \) | $0.876154868$ | $0.836535135$ | 3.385278671 | \( \frac{4114651446451}{8171316000} a + \frac{15343684459019}{16342632000} \) | \( \bigl[1\) , \(  -a - 1\) , \(  a + 1\) , \(  54 a - 67\) , \(  -48 a + 185\bigr] \) | ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(54a-67\right){x}-48a+185$ | 
      
              | 18300.2-b5 | 18300.2-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 18300.2 | \(  2^{2} \cdot 3 \cdot 5^{2} \cdot 61  \) | \(  2^{12} \cdot 3^{3} \cdot 5^{6} \cdot 61^{3}  \) | $1.80016$ | $(-2a+1), (-9a+4), (2), (5)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 2 \cdot 3^{4} \) | $0.876154868$ | $0.836535135$ | 3.385278671 | \( -\frac{4114651446451}{8171316000} a + \frac{23572987351921}{16342632000} \) | \( \bigl[a + 1\) , \(  1\) , \(  a\) , \(  -13 a + 67\) , \(  47 a + 138\bigr] \) | ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-13a+67\right){x}+47a+138$ | 
      
              | 18361.2-a2 | 18361.2-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 18361.2 | \(  7 \cdot 43 \cdot 61  \) | \(  7^{3} \cdot 43^{3} \cdot 61^{3}  \) | $1.80166$ | $(-3a+1), (-7a+1), (-9a+4)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $1$ | $1.155799752$ | 0.444867532 | \( \frac{13628440248975360}{6189976379881} a - \frac{3666319632990208}{6189976379881} \) | \( \bigl[0\) , \(  1\) , \(  1\) , \(  -40 a + 13\) , \(  50 a - 95\bigr] \) | ${y}^2+{y}={x}^{3}+{x}^{2}+\left(-40a+13\right){x}+50a-95$ | 
      
              | 18361.7-a4 | 18361.7-a | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 18361.7 | \(  7 \cdot 43 \cdot 61  \) | \(  7^{3} \cdot 43^{3} \cdot 61^{3}  \) | $1.80166$ | $(3a-2), (7a-6), (-9a+5)$ | 0 | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{3} \) | $1$ | $1.155799752$ | 0.444867532 | \( -\frac{13628440248975360}{6189976379881} a + \frac{9962120615985152}{6189976379881} \) | \( \bigl[0\) , \(  -a\) , \(  1\) , \(  -27 a - 13\) , \(  -50 a - 45\bigr] \) | ${y}^2+{y}={x}^{3}-a{x}^{2}+\left(-27a-13\right){x}-50a-45$ | 
      
              | 18900.1-b4 | 18900.1-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 18900.1 | \(  2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 7  \) | \(  2^{18} \cdot 3^{9} \cdot 5^{6} \cdot 7^{6}  \) | $1.81474$ | $(-2a+1), (-3a+1), (2), (5)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  |  |  | $3$ | 3Cs.1.1[2] | $1$ | \( 2 \cdot 3^{5} \) | $0.619900916$ | $0.355978607$ | 3.057713517 | \( \frac{5300081186829}{3764768000} a + \frac{4786104045711}{7529536000} \) | \( \bigl[a\) , \(  -a + 1\) , \(  0\) , \(  -423 a + 162\) , \(  1032 a - 2703\bigr] \) | ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-423a+162\right){x}+1032a-2703$ | 
      
              | 18900.2-b4 | 18900.2-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 18900.2 | \(  2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 7  \) | \(  2^{18} \cdot 3^{9} \cdot 5^{6} \cdot 7^{6}  \) | $1.81474$ | $(-2a+1), (3a-2), (2), (5)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  |  |  | $3$ | 3Cs.1.1[2] | $1$ | \( 2 \cdot 3^{5} \) | $0.619900916$ | $0.355978607$ | 3.057713517 | \( -\frac{5300081186829}{3764768000} a + \frac{15386266419369}{7529536000} \) | \( \bigl[a\) , \(  -a + 1\) , \(  0\) , \(  -261 a - 162\) , \(  -1032 a - 1671\bigr] \) | ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-261a-162\right){x}-1032a-1671$ | 
      
              | 19929.3-b1 | 19929.3-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 19929.3 | \(  3 \cdot 7 \cdot 13 \cdot 73  \) | \(  3^{3} \cdot 7^{3} \cdot 13^{3} \cdot 73^{3}  \) | $1.83895$ | $(-2a+1), (-3a+1), (4a-3), (-9a+1)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{4} \) | $1.151421976$ | $0.891596343$ | 2.370839514 | \( \frac{307733452619776000}{2638367367363} a - \frac{203804074999808000}{2638367367363} \) | \( \bigl[0\) , \(  -a\) , \(  1\) , \(  -113 a + 153\) , \(  260 a + 402\bigr] \) | ${y}^2+{y}={x}^{3}-a{x}^{2}+\left(-113a+153\right){x}+260a+402$ | 
      
              | 19929.6-b4 | 19929.6-b | $5$ | $9$ | \(\Q(\sqrt{-3}) \) | $2$ | $[0, 1]$ | 19929.6 | \(  3 \cdot 7 \cdot 13 \cdot 73  \) | \(  3^{3} \cdot 7^{3} \cdot 13^{3} \cdot 73^{3}  \) | $1.83895$ | $(-2a+1), (3a-2), (-4a+1), (9a-8)$ | $1$ | $\Z/3\Z\oplus\Z/3\Z$ | $\textsf{no}$ |  | $\mathrm{SU}(2)$ |  |  | ✓ |  | $3$ | 3Cs.1.1[2] | $1$ | \( 3^{4} \) | $1.151421976$ | $0.891596343$ | 2.370839514 | \( -\frac{307733452619776000}{2638367367363} a + \frac{103929377619968000}{2638367367363} \) | \( \bigl[0\) , \(  a - 1\) , \(  1\) , \(  113 a + 40\) , \(  -260 a + 662\bigr] \) | ${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(113a+40\right){x}-260a+662$ | 
  
  *The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.