Defining polynomial
$x^{3} + 53$ |
Invariants
Residue field characteristic: | $53$ |
Degree: | $3$ |
Base field: | 53.4.1.0a1.1 |
Ramification index $e$: | $3$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $2$ |
Absolute Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $2$ (complete) |
Ambiguity: | $3$ |
Mass: | $1$ |
Absolute Mass: | $1/4$ |
Varying
These invariants are all associated to absolute extensions of $\Q_{ 53 }$ within this relative family, not the relative extension.
Galois group: | $C_3 : C_4$ (show 1), $C_3\times (C_3 : C_4)$ (show 1) |
Hidden Artin slopes: | $[\ ]$ (show 1), $[\ ]^{3}$ (show 1) |
Indices of inseparability: | $[0]$ |
Associated inertia: | $[1]$ |
Jump Set: | undefined |
Fields
Showing all 2
Download displayed columns for resultsLabel | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Jump Set |
---|---|---|---|---|---|---|---|---|
53.4.3.8a1.1 | $( x^{4} + 9 x^{2} + 38 x + 2 )^{3} + 53 x$ | $C_3\times (C_3 : C_4)$ (as 12T19) | $36$ | $6$ | $[\ ]^{3}$ | $[0]$ | $[1]$ | undefined |
53.4.3.8a1.2 | $( x^{4} + 9 x^{2} + 38 x + 2 )^{3} + 53$ | $C_3 : C_4$ (as 12T5) | $12$ | $12$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |