Properties

Label 53.4.1.0a1.1-1.3.2a
Base 53.4.1.0a1.1
Degree \(3\)
e \(3\)
f \(1\)
c \(2\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{3} + 53$

Invariants

Residue field characteristic: $53$
Degree: $3$
Base field: 53.4.1.0a1.1
Ramification index $e$: $3$
Residue field degree $f$: $1$
Discriminant exponent $c$: $2$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $3$
Mass: $1$
Absolute Mass: $1/4$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 53 }$ within this relative family, not the relative extension.

Galois group: $C_3 : C_4$ (show 1), $C_3\times (C_3 : C_4)$ (show 1)
Hidden Artin slopes: $[\ ]$ (show 1), $[\ ]^{3}$ (show 1)
Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
53.4.3.8a1.1 $( x^{4} + 9 x^{2} + 38 x + 2 )^{3} + 53 x$ $C_3\times (C_3 : C_4)$ (as 12T19) $36$ $6$ $[\ ]_{3}^{12}$ $[\ ]_{3}^{12}$ $[\ ]^{3}$ $[\ ]^{3}$ $[0]$ $[1]$ $z^2 + 3 z + 3$ undefined
53.4.3.8a1.2 $( x^{4} + 9 x^{2} + 38 x + 2 )^{3} + 53$ $C_3 : C_4$ (as 12T5) $12$ $12$ $[\ ]_{3}^{4}$ $[\ ]_{3}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^2 + 3 z + 3$ undefined
  displayed columns for results