Properties

Label 5.2.1.0a1.1-2.2.2a
Base 5.2.1.0a1.1
Degree \(4\)
e \(2\)
f \(2\)
c \(2\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{2} + 5d_{0}$

Invariants

Residue field characteristic: $5$
Degree: $4$
Base field: $\Q_{5}(\sqrt{2})$
Ramification index $e$: $2$
Residue field degree $f$: $2$
Discriminant exponent $c$: $2$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $4$
Mass: $1$
Absolute Mass: $1/4$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 5 }$ within this relative family, not the relative extension.

Galois group: $C_8$ (show 1), $C_4\times C_2$ (show 1)
Hidden Artin slopes: $[\ ]$
Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
5.4.2.4a1.1 $( x^{4} + 4 x^{2} + 4 x + 2 )^{2} + 5 x$ $C_8$ (as 8T1) $8$ $8$ $[\ ]_{2}^{4}$ $[\ ]_{2}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z + 2$ undefined
5.4.2.4a1.2 $( x^{4} + 4 x^{2} + 4 x + 2 )^{2} + 5$ $C_4\times C_2$ (as 8T2) $8$ $8$ $[\ ]_{2}^{4}$ $[\ ]_{2}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z + 2$ undefined
  displayed columns for results