Properties

Label 5.4.2.4a
Base 5.1.1.0a1.1
Degree \(8\)
e \(2\)
f \(4\)
c \(4\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{2} + 5d_{0}$

Invariants

Residue field characteristic: $5$
Degree: $8$
Base field: $\Q_{5}$
Ramification index $e$: $2$
Residue field degree $f$: $4$
Discriminant exponent $c$: $4$
Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $8$
Mass: $1$
Absolute Mass: $1/4$

Varying

Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Galois groups and Hidden Artin slopes

Fields


Showing all 2

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
5.4.2.4a1.1 $( x^{4} + 4 x^{2} + 4 x + 2 )^{2} + 5 x$ $C_8$ (as 8T1) $8$ $8$ $[\ ]_{2}^{4}$ $[\ ]_{2}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z + 2$ undefined
5.4.2.4a1.2 $( x^{4} + 4 x^{2} + 4 x + 2 )^{2} + 5$ $C_4\times C_2$ (as 8T2) $8$ $8$ $[\ ]_{2}^{4}$ $[\ ]_{2}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z + 2$ undefined
  displayed columns for results