Defining polynomial over unramified subextension
$x^{2} + 5d_{0}$ |
Invariants
Residue field characteristic: | $5$ |
Degree: | $8$ |
Base field: | $\Q_{5}$ |
Ramification index $e$: | $2$ |
Residue field degree $f$: | $4$ |
Discriminant exponent $c$: | $4$ |
Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $2$ (complete) |
Ambiguity: | $8$ |
Mass: | $1$ |
Absolute Mass: | $1/4$ |
Varying
Indices of inseparability: | $[0]$ |
Associated inertia: | $[1]$ |
Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Fields
Showing all 2
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
5.4.2.4a1.1 | $( x^{4} + 4 x^{2} + 4 x + 2 )^{2} + 5 x$ | $C_8$ (as 8T1) | $8$ | $8$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
5.4.2.4a1.2 | $( x^{4} + 4 x^{2} + 4 x + 2 )^{2} + 5$ | $C_4\times C_2$ (as 8T2) | $8$ | $8$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |