These invariants are all associated to absolute extensions of $\Q_{ 3 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 3.2.3.10a1.1 |
$( x^{2} + 2 x + 2 )^{3} + 3$ |
$D_{6}$ (as 6T3) |
$12$ |
$2$ |
$[\frac{5}{2}]_{2}^{2}$ |
$[\frac{3}{2}]_{2}^{2}$ |
$[\ ]_{2}$ |
$[\ ]_{2}$ |
$[3, 0]$ |
$[1]$ |
$z + (2 t + 2)$ |
undefined |
| 3.2.3.10a1.2 |
$( x^{2} + 2 x + 2 )^{3} + 9 x ( x^{2} + 2 x + 2 ) + 3$ |
$S_3^2$ (as 6T9) |
$36$ |
$1$ |
$[\frac{3}{2}, \frac{5}{2}]_{2}^{2}$ |
$[\frac{1}{2},\frac{3}{2}]_{2}^{2}$ |
$[\frac{3}{2}]_{2}$ |
$[\frac{1}{2}]_{2}$ |
$[3, 0]$ |
$[1]$ |
$z + (2 t + 2)$ |
undefined |
| 3.2.3.10a1.3 |
$( x^{2} + 2 x + 2 )^{3} + 9 ( x^{2} + 2 x + 2 ) + 3$ |
$D_{6}$ (as 6T3) |
$12$ |
$2$ |
$[\frac{5}{2}]_{2}^{2}$ |
$[\frac{3}{2}]_{2}^{2}$ |
$[\ ]_{2}$ |
$[\ ]_{2}$ |
$[3, 0]$ |
$[1]$ |
$z + (2 t + 2)$ |
undefined |
| 3.2.3.10a1.4 |
$( x^{2} + 2 x + 2 )^{3} + \left(9 x + 9\right) ( x^{2} + 2 x + 2 ) + 3$ |
$S_3^2$ (as 6T9) |
$36$ |
$1$ |
$[\frac{3}{2}, \frac{5}{2}]_{2}^{2}$ |
$[\frac{1}{2},\frac{3}{2}]_{2}^{2}$ |
$[\frac{3}{2}]_{2}$ |
$[\frac{1}{2}]_{2}$ |
$[3, 0]$ |
$[1]$ |
$z + (2 t + 2)$ |
undefined |
| 3.2.3.10a1.5 |
$( x^{2} + 2 x + 2 )^{3} + 18 ( x^{2} + 2 x + 2 ) + 3$ |
$D_{6}$ (as 6T3) |
$12$ |
$2$ |
$[\frac{5}{2}]_{2}^{2}$ |
$[\frac{3}{2}]_{2}^{2}$ |
$[\ ]_{2}$ |
$[\ ]_{2}$ |
$[3, 0]$ |
$[1]$ |
$z + (2 t + 2)$ |
undefined |
| 3.2.3.10a1.6 |
$( x^{2} + 2 x + 2 )^{3} + \left(9 x + 18\right) ( x^{2} + 2 x + 2 ) + 3$ |
$S_3^2$ (as 6T9) |
$36$ |
$1$ |
$[\frac{3}{2}, \frac{5}{2}]_{2}^{2}$ |
$[\frac{1}{2},\frac{3}{2}]_{2}^{2}$ |
$[\frac{3}{2}]_{2}$ |
$[\frac{1}{2}]_{2}$ |
$[3, 0]$ |
$[1]$ |
$z + (2 t + 2)$ |
undefined |
Download
displayed columns for
results