Defining polynomial
$( x^{2} + 2 x + 2 )^{3} + 9 x ( x^{2} + 2 x + 2 ) + 3$
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $6$ |
Ramification index $e$: | $3$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $10$ |
Discriminant root field: | $\Q_{3}(\sqrt{2})$ |
Root number: | $1$ |
$\Aut(K/\Q_{3})$: | $C_1$ |
This field is not Galois over $\Q_{3}.$ | |
Visible Artin slopes: | $[\frac{5}{2}]$ |
Visible Swan slopes: | $[\frac{3}{2}]$ |
Means: | $\langle1\rangle$ |
Rams: | $(\frac{3}{2})$ |
Jump set: | undefined |
Roots of unity: | $8 = (3^{ 2 } - 1)$ |
Intermediate fields
$\Q_{3}(\sqrt{2})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of
\( x^{2} + 2 x + 2 \)
|
Relative Eisenstein polynomial: |
\( x^{3} + 9 t x + 3 \)
$\ \in\Q_{3}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z + (2 t + 2)$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[3, 0]$ |
Invariants of the Galois closure
Galois degree: | $36$ |
Galois group: | $S_3^2$ (as 6T9) |
Inertia group: | Intransitive group isomorphic to $C_3:S_3$ |
Wild inertia group: | $C_3^2$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $2$ |
Galois Artin slopes: | $[\frac{3}{2}, \frac{5}{2}]$ |
Galois Swan slopes: | $[\frac{1}{2},\frac{3}{2}]$ |
Galois mean slope: | $2.0555555555555554$ |
Galois splitting model: | $x^{6} - 12 x^{3} + 45$ |