Properties

Label 3.2.3.10a1.2
Base \(\Q_{3}\)
Degree \(6\)
e \(3\)
f \(2\)
c \(10\)
Galois group $S_3^2$ (as 6T9)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 2 x + 2 )^{3} + 9 x ( x^{2} + 2 x + 2 ) + 3$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $6$
Ramification index $e$: $3$
Residue field degree $f$: $2$
Discriminant exponent $c$: $10$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_1$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{5}{2}]$
Visible Swan slopes:$[\frac{3}{2}]$
Means:$\langle1\rangle$
Rams:$(\frac{3}{2})$
Jump set:undefined
Roots of unity:$8 = (3^{ 2 } - 1)$

Intermediate fields

$\Q_{3}(\sqrt{2})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + 9 t x + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + (2 t + 2)$
Associated inertia:$1$
Indices of inseparability:$[3, 0]$

Invariants of the Galois closure

Galois degree: $36$
Galois group: $S_3^2$ (as 6T9)
Inertia group: Intransitive group isomorphic to $C_3:S_3$
Wild inertia group: $C_3^2$
Galois unramified degree: $2$
Galois tame degree: $2$
Galois Artin slopes: $[\frac{3}{2}, \frac{5}{2}]$
Galois Swan slopes: $[\frac{1}{2},\frac{3}{2}]$
Galois mean slope: $2.0555555555555554$
Galois splitting model:$x^{6} - 12 x^{3} + 45$