Show commands: Magma
Group invariants
| Abstract group: | $S_3^2$ |
| |
| Order: | $36=2^{2} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $6$ |
| |
| Transitive number $t$: | $9$ |
| |
| CHM label: | $F_{18}(6):2 = [1/2.S(3)^{2}]2$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,4)(2,5)(3,6)$, $(2,4,6)$, $(1,5)(2,4)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 2 $12$: $D_{6}$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Low degree siblings
9T8, 12T16, 18T9, 18T11 x 2, 36T13Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{6}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{3}$ | $3$ | $2$ | $3$ | $(1,6)(2,5)(3,4)$ |
| 2B | $2^{3}$ | $3$ | $2$ | $3$ | $(1,2)(3,4)(5,6)$ |
| 2C | $2^{2},1^{2}$ | $9$ | $2$ | $2$ | $(1,5)(4,6)$ |
| 3A | $3^{2}$ | $2$ | $3$ | $4$ | $(1,5,3)(2,4,6)$ |
| 3B | $3^{2}$ | $2$ | $3$ | $4$ | $(1,3,5)(2,4,6)$ |
| 3C | $3,1^{3}$ | $4$ | $3$ | $2$ | $(1,5,3)$ |
| 6A | $6$ | $6$ | $6$ | $5$ | $(1,4,5,6,3,2)$ |
| 6B | $6$ | $6$ | $6$ | $5$ | $(1,6,3,2,5,4)$ |
Malle's constant $a(G)$: $1/2$
Character table
| 1A | 2A | 2B | 2C | 3A | 3B | 3C | 6A | 6B | ||
| Size | 1 | 3 | 3 | 9 | 2 | 2 | 4 | 6 | 6 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3A | 3B | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 2A | 2B | |
| Type | ||||||||||
| 36.10.1a | R | |||||||||
| 36.10.1b | R | |||||||||
| 36.10.1c | R | |||||||||
| 36.10.1d | R | |||||||||
| 36.10.2a | R | |||||||||
| 36.10.2b | R | |||||||||
| 36.10.2c | R | |||||||||
| 36.10.2d | R | |||||||||
| 36.10.4a | R |
Regular extensions
| $f_{ 1 } =$ |
$x^{6} + 6 x^{4} + t x^{3} + 9 x^{2} + 3 t x + 4$
|