Group action invariants
| Degree $n$ : | $6$ | |
| Transitive number $t$ : | $9$ | |
| Group : | $S_3^2$ | |
| CHM label : | $F_{18}(6):2 = [1/2.S(3)^{2}]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4)(2,5)(3,6), (2,4,6), (1,5)(2,4) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 2 12: $D_{6}$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Low degree siblings
9T8, 12T16, 18T9, 18T11 x 2, 36T13Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1 $ | $9$ | $2$ | $(3,5)(4,6)$ |
| $ 3, 1, 1, 1 $ | $4$ | $3$ | $(2,4,6)$ |
| $ 2, 2, 2 $ | $3$ | $2$ | $(1,2)(3,4)(5,6)$ |
| $ 2, 2, 2 $ | $3$ | $2$ | $(1,2)(3,6)(4,5)$ |
| $ 6 $ | $6$ | $6$ | $(1,2,3,4,5,6)$ |
| $ 6 $ | $6$ | $6$ | $(1,2,3,6,5,4)$ |
| $ 3, 3 $ | $2$ | $3$ | $(1,3,5)(2,4,6)$ |
| $ 3, 3 $ | $2$ | $3$ | $(1,3,5)(2,6,4)$ |
Group invariants
| Order: | $36=2^{2} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [36, 10] |
| Character table: |
2 2 2 . 2 2 1 1 1 1
3 2 . 2 1 1 1 1 2 2
1a 2a 3a 2b 2c 6a 6b 3b 3c
2P 1a 1a 3a 1a 1a 3b 3c 3b 3c
3P 1a 2a 1a 2b 2c 2b 2c 1a 1a
5P 1a 2a 3a 2b 2c 6a 6b 3b 3c
X.1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 1 1
X.3 1 -1 1 1 -1 1 -1 1 1
X.4 1 1 1 -1 -1 -1 -1 1 1
X.5 2 . -1 . -2 . 1 2 -1
X.6 2 . -1 . 2 . -1 2 -1
X.7 2 . -1 -2 . 1 . -1 2
X.8 2 . -1 2 . -1 . -1 2
X.9 4 . 1 . . . . -2 -2
|