These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.2.8.50b1.277 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{2} + 2$ |
$C_2\wr D_4$ (as 16T396) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,\frac{7}{2},4]$ |
$[1,\frac{5}{2},3]$ |
$[18, 10, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 15, 23]$ |
| 2.2.8.50b1.281 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{2} + 2$ |
$C_2\wr D_4$ (as 16T396) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,\frac{7}{2},4]$ |
$[1,\frac{5}{2},3]$ |
$[18, 10, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 15, 23]$ |
| 2.2.8.50b1.290 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{2} + 2$ |
$C_2\wr D_4$ (as 16T396) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,\frac{7}{2},4]$ |
$[1,\frac{5}{2},3]$ |
$[18, 10, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 15, 23]$ |
| 2.2.8.50b1.295 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{2} + 2$ |
$C_2\wr D_4$ (as 16T396) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,\frac{7}{2},4]$ |
$[1,\frac{5}{2},3]$ |
$[18, 10, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 15, 23]$ |
| 2.2.8.50b1.299 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{2} + 2$ |
$C_2\wr D_4$ (as 16T396) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,\frac{7}{2},4]$ |
$[1,\frac{5}{2},3]$ |
$[18, 10, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 15, 23]$ |
| 2.2.8.50b1.331 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 4 ( x^{2} + x + 1 )^{2} + 2$ |
$C_2\wr D_4$ (as 16T396) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,\frac{7}{2},4]$ |
$[1,\frac{5}{2},3]$ |
$[18, 10, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 15, 23]$ |
| 2.2.8.50b1.332 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 4 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$C_2\wr D_4$ (as 16T396) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,\frac{7}{2},4]$ |
$[1,\frac{5}{2},3]$ |
$[18, 10, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 15, 23]$ |
| 2.2.8.50b1.335 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 4 ( x^{2} + x + 1 )^{2} + 2$ |
$C_2\wr D_4$ (as 16T396) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,\frac{7}{2},4]$ |
$[1,\frac{5}{2},3]$ |
$[18, 10, 4, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 15, 23]$ |