| $( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{2} + 2$ ![Copy content]()  ![Toggle raw display]()  | 
  | Base field: | $\Q_{2}$ | 
| Degree $d$: | $16$ | 
      | Ramification index $e$: | $8$ | 
      | Residue field degree $f$: | $2$ | 
      | Discriminant exponent $c$: | $50$ | 
      | Discriminant root field: | $\Q_{2}$ | 
      | Root number: | $-1$ | 
        | $\Aut(K/\Q_{2})$: | $C_2^2$ | 
    
      | This field is not Galois over $\Q_{2}.$ | 
      | Visible Artin slopes: | $[2, 3, \frac{17}{4}]$ | 
      | Visible Swan slopes: | $[1,2,\frac{13}{4}]$ | 
      | Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{9}{4}\rangle$ | 
      | Rams: | $(1, 3, 8)$ | 
      | Jump set: | $[1, 7, 15, 23]$ | 
      | Roots of unity: | $12 = (2^{ 2 } - 1) \cdot 2^{ 2 }$ | 
  Fields in the database are given up to isomorphism.  Isomorphic 
  intermediate fields are shown with their multiplicities.
  | Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of 
    \( x^{2} + x + 1 \) ![Copy content]()  ![Toggle raw display]()  | 
  | Relative Eisenstein polynomial: | \( x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 2 x^{4} + 4 x^{2} + 2 \)
    
    $\ \in\Q_{2}(t)[x]$ ![Copy content]()  ![Toggle raw display]()  | 
       
    
  
  | Galois degree: | $128$ | 
  | Galois group: | $C_2\wr D_4$ (as 16T396) | 
  | Inertia group: | Intransitive group isomorphic to $C_2\wr C_2^2$ | 
  | Wild inertia group: | $C_2\wr C_2^2$ | 
  | Galois unramified degree: | $2$ | 
  | Galois tame degree: | $1$ | 
  | Galois Artin slopes: | $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ | 
| Galois Swan slopes: | $[1,1,2,\frac{5}{2},3,\frac{13}{4}]$ | 
  | Galois mean slope: | $3.84375$ | 
  | Galois splitting model: | $x^{16} - 4 x^{14} - 2 x^{12} - 8 x^{10} + 154 x^{8} + 400 x^{6} + 340 x^{4} + 200 x^{2} + 100$ ![Copy content]()  ![Toggle raw display]()  |