These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.2.8.56b2.833 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.834 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.835 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.836 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.837 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.838 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.839 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.840 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.841 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.842 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.843 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.844 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.845 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.846 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.847 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.848 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.849 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.850 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.851 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.852 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.853 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.854 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.855 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.856 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.857 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.858 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.859 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.860 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.861 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.862 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.863 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.864 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.865 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.866 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.867 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.868 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.869 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.870 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.871 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.872 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.873 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.874 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.875 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.876 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.877 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.878 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.879 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.880 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 16\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^5.\OD_{16}$ (as 16T901) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.881 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.882 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6:C_8$ (as 16T924) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |