These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.2.8.56b1.509 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.510 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(24 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.511 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.512 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(24 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.517 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.518 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(24 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.519 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.520 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(24 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.981 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.982 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.983 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.984 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.985 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.986 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.987 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.988 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.989 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.990 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.991 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.992 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.1005 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.1006 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.1007 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.1008 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.1009 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.1010 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.1011 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.1012 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.1013 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.1014 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.1015 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b1.1016 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 24 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}]^{4}$ |
$[1,1,2,2,\frac{5}{2},3,3,\frac{13}{4}]^{4}$ |
$[2,2,3,4,\frac{7}{2}]_{2}$ |
$[1,1,2,3,\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |