These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.2.8.56b2.897 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.898 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.899 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.900 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.901 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.902 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.903 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.904 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.905 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.906 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.907 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.908 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.909 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.910 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.911 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.912 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.913 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.914 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.915 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.916 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.917 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.918 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.919 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.920 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.921 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.922 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.923 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.924 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.925 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.926 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.927 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.928 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.929 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.930 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.931 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.932 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.933 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.934 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.935 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.936 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.937 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.938 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.939 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.940 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.941 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.942 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.943 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.944 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 24 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.945 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56b2.946 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{6} + 12 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 24 x + 2$ |
$C_2^4.C_2\wr C_4$ (as 16T1215) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{4}$ |
$[\frac{17}{4},2,2,\frac{7}{2},\frac{7}{2}]_{2}$ |
$[\frac{13}{4},1,1,\frac{5}{2},\frac{5}{2}]_{2}$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + t$ |
$[1, 3, 7, 15]$ |