$x^{4} + \left(b_{27} \pi^{7} + b_{23} \pi^{6} + a_{19} \pi^{5}\right) x^{3} + \left(b_{18} \pi^{5} + b_{14} \pi^{4} + a_{10} \pi^{3}\right) x^{2} + \left(b_{25} \pi^{7} + b_{21} \pi^{6}\right) x + c_{28} \pi^{8} + c_{20} \pi^{6} + \pi$ |
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Galois group: | $C_2^2 : C_4$ (show 4), $C_4^2:C_2$ (show 2), $C_4 \times D_4$ (show 4), $C_4^2:C_2$ (show 1), $C_4^2:C_2$ (show 1), $C_4:D_4$ (show 1), $C_2^2.D_4$ (show 3), $C_2^2\wr C_2$ (show 2), $C_4:D_4$ (show 4), $C_2^2.D_4$ (show 6), $C_2\wr C_2^2$ (show 2), $C_2\wr C_2^2$ (show 2), $C_2^3.D_4$ (show 2), $C_2^3.D_4$ (show 2), $C_2^4.D_4$ (show 2), $C_2^4.D_4$ (show 2), $C_4^2:D_4$ (show 2), $C_4^2.D_4$ (show 4), $C_4^2:D_4$ (show 4), $C_4^2:D_4$ (show 2), $C_2^4.(C_4\times D_4)$ (show 4), $C_2^4.(C_4\times D_4)$ (show 4) |
Hidden Artin slopes: | $[\ ]^{2}$ (show 24), $[2]^{2}$ (show 8), $[2,2,\frac{7}{2}]^{4}$ (show 8), $[2]^{4}$ (show 4), $[2,\frac{7}{2}]^{2}$ (show 12), $[\ ]$ (show 4) |
Indices of inseparability: | $[39,30,20,8,0]$ |
Associated inertia: | $[1,1,1,1]$ |
Jump Set: | $[1,7,14,32,48]$ |
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.16.54o1.201 |
$x^{16} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^2 : C_4$ (as 16T10) |
$16$ |
$16$ |
$[2, 3, \frac{7}{2}, 4]$ |
$[1,2,\frac{5}{2},3]$ |
$[\ ]$ |
$[\ ]$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 14, 32, 48]$ |
2.1.16.54o1.202 |
$x^{16} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 26$ |
$C_2^2 : C_4$ (as 16T10) |
$16$ |
$16$ |
$[2, 3, \frac{7}{2}, 4]$ |
$[1,2,\frac{5}{2},3]$ |
$[\ ]$ |
$[\ ]$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 14, 32, 48]$ |
2.1.16.54o1.212 |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^2 : C_4$ (as 16T10) |
$16$ |
$16$ |
$[2, 3, \frac{7}{2}, 4]$ |
$[1,2,\frac{5}{2},3]$ |
$[\ ]$ |
$[\ ]$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 14, 32, 48]$ |
2.1.16.54o1.213 |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 26$ |
$C_2^2 : C_4$ (as 16T10) |
$16$ |
$16$ |
$[2, 3, \frac{7}{2}, 4]$ |
$[1,2,\frac{5}{2},3]$ |
$[\ ]$ |
$[\ ]$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 14, 32, 48]$ |
Download
displayed columns for
results