These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.16.54o1.205 |
$x^{16} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 10$ |
$C_4^2:D_4$ (as 16T400) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 14, 32, 48]$ |
| 2.1.16.54o1.206 |
$x^{16} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 10$ |
$C_4^2:D_4$ (as 16T400) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 14, 32, 48]$ |
| 2.1.16.54o1.215 |
$x^{16} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 10$ |
$C_4^2:D_4$ (as 16T400) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 14, 32, 48]$ |
| 2.1.16.54o1.216 |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 10$ |
$C_4^2:D_4$ (as 16T400) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 14, 32, 48]$ |