$x^{2} + \left(b_{15} \pi^{8} + b_{13} \pi^{7} + b_{11} \pi^{6} + b_{9} \pi^{5}\right) x + c_{16} \pi^{9} + \pi$ |
The following invariants arise for fields within the LMFDB; since not all fields in this family are stored, it may be incomplete.
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Galois group: | $QD_{16}$ (show 4), $D_8:C_2$ (show 2), $D_8:C_2$ (show 2), $Q_{16}:C_2$ (show 2), $D_4:D_4$ (show 4), $C_4^2:C_2^2$ (show 4), $C_4^2:D_4$ (show 4), $C_2\wr D_4$ (show 8), $C_4^2:D_4$ (show 8), $C_4^2:D_4$ (show 4), $C_4^2:D_4$ (show 4), $C_2^6.D_4$ (show 8), $C_2\wr D_4$ (show 32) (incomplete) |
Hidden Artin slopes: | $[\ ]$ (show 4), $[2]$ (show 6), $[2,\frac{7}{2}]$ (show 8), $[2,\frac{7}{2},\frac{17}{4}]$ (show 24), $[2,2,\frac{7}{2}]$ (show 4), not computed (show 32), $[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ (show 8) (incomplete) |
Indices of inseparability: | $[24,16,8,0]$ |
Associated inertia: | $[1,1,1]$ |
Jump Set: | $[1,3,7,15]$ |
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.2.8.62a1.1611 |
$( x^{2} + x + 1 )^{8} + 16 x ( x^{2} + x + 1 )^{7} + 8 ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$D_8:C_2$ (as 16T47) |
$32$ |
$8$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[2]$ |
$[1]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.1612 |
$( x^{2} + x + 1 )^{8} + 16 x ( x^{2} + x + 1 )^{7} + 8 ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 32 x + 2$ |
$D_8:C_2$ (as 16T47) |
$32$ |
$8$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[2]$ |
$[1]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.1619 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$D_8:C_2$ (as 16T35) |
$32$ |
$8$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[2]$ |
$[1]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.1620 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 32 x + 2$ |
$Q_{16}:C_2$ (as 16T50) |
$32$ |
$8$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[2]$ |
$[1]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.1621 |
$( x^{2} + x + 1 )^{8} + 16 x ( x^{2} + x + 1 )^{7} + 8 ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$D_8:C_2$ (as 16T35) |
$32$ |
$8$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[2]$ |
$[1]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.1622 |
$( x^{2} + x + 1 )^{8} + 16 x ( x^{2} + x + 1 )^{7} + 8 ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 32 x + 2$ |
$Q_{16}:C_2$ (as 16T50) |
$32$ |
$8$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[2]$ |
$[1]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
Download
displayed columns for
results