Properties

Label 2.2.8.62a1.1620
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(62\)
Galois group $Q_{16}:C_2$ (as 16T50)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 32 x + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $62$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $Q_8$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, 4, 5]$
Visible Swan slopes:$[2,3,4]$
Means:$\langle1, 2, 3\rangle$
Rams:$(2, 4, 8)$
Jump set:$[1, 3, 7, 15]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, $\Q_{2}(\sqrt{-2})$, $\Q_{2}(\sqrt{-2\cdot 5})$, 2.2.2.6a1.1, 2.1.4.11a1.4 x2, 2.1.4.11a1.7 x2, 2.2.4.22a1.13

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 8 x^{2} + 16 x + 32 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[24, 16, 8, 0]$

Invariants of the Galois closure

Galois degree: $32$
Galois group: $Q_{16}:C_2$ (as 16T50)
Inertia group: Intransitive group isomorphic to $\OD_{16}$
Wild inertia group: $\OD_{16}$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 3, 4, 5]$
Galois Swan slopes: $[1,2,3,4]$
Galois mean slope: $4.0$
Galois splitting model:$x^{16} - 24 x^{14} + 252 x^{12} - 1440 x^{10} + 4770 x^{8} - 8640 x^{6} + 5832 x^{4} + 2592 x^{2} + 324$