Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $50$ | |
| Group : | $SD_{16}:C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,8,2,7)(3,6,4,5)(9,12,10,11)(13,15,14,16), (9,10)(11,12)(13,14)(15,16), (1,13)(2,14)(3,11)(4,12)(5,15)(6,16)(7,10)(8,9) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$ 16: $D_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4$
Low degree siblings
16T32, 32T18Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,15,10,16)(11,14,12,13)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,16,10,15)(11,13,12,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,13,10,14)(11,15,12,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,14,10,13)(11,16,12,15)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 9, 3,16, 2,10, 4,15)( 5,11, 7,13, 6,12, 8,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 9, 4,15, 2,10, 3,16)( 5,11, 8,14, 6,12, 7,13)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1,11, 2,12)( 3,14, 4,13)( 5,10, 6, 9)( 7,16, 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1,11)( 2,12)( 3,14)( 4,13)( 5,10)( 6, 9)( 7,16)( 8,15)$ |
Group invariants
| Order: | $32=2^{5}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [32, 44] |
| Character table: |
2 5 4 5 4 4 3 3 3 3 3 3
1a 2a 2b 4a 4b 4c 4d 8a 8b 4e 2c
2P 1a 1a 1a 2b 2b 2b 2b 4b 4b 2b 1a
3P 1a 2a 2b 4a 4b 4c 4d 8a 8b 4e 2c
5P 1a 2a 2b 4a 4b 4c 4d 8a 8b 4e 2c
7P 1a 2a 2b 4a 4b 4c 4d 8a 8b 4e 2c
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 -1 1 -1 1
X.3 1 -1 1 -1 1 -1 1 1 -1 1 -1
X.4 1 -1 1 -1 1 1 -1 -1 1 1 -1
X.5 1 -1 1 -1 1 1 -1 1 -1 -1 1
X.6 1 1 1 1 1 -1 -1 -1 -1 1 1
X.7 1 1 1 1 1 -1 -1 1 1 -1 -1
X.8 1 1 1 1 1 1 1 -1 -1 -1 -1
X.9 2 2 2 -2 -2 . . . . . .
X.10 2 -2 2 2 -2 . . . . . .
X.11 4 . -4 . . . . . . . .
|