These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.2.8.62a1.269 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 ) + 16 x + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.270 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 ) + 48 x + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.271 |
$( x^{2} + x + 1 )^{8} + 24 ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 ) + 16 x + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.272 |
$( x^{2} + x + 1 )^{8} + 24 ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 ) + 48 x + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.273 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 x ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 ) + 16 x + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.274 |
$( x^{2} + x + 1 )^{8} + 24 ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 x ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 ) + 16 x + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.275 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 ) + 16 x + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.276 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 ) + 48 x + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.277 |
$( x^{2} + x + 1 )^{8} + 24 ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 ) + 16 x + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.278 |
$( x^{2} + x + 1 )^{8} + 24 ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 ) + 48 x + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.299 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{3} + 16 ( x^{2} + x + 1 ) + 16 x + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.300 |
$( x^{2} + x + 1 )^{8} + 24 ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{3} + 16 ( x^{2} + x + 1 ) + 16 x + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.301 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 )^{3} + 16 ( x^{2} + x + 1 ) + 16 x + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.302 |
$( x^{2} + x + 1 )^{8} + 24 ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 )^{3} + 16 ( x^{2} + x + 1 ) + 16 x + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.571 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{6} + 16 x ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 ) + 16 x + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.572 |
$( x^{2} + x + 1 )^{8} + 24 ( x^{2} + x + 1 )^{7} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{6} + 16 x ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 ) + 16 x + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T822) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |