These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Galois group: | $D_8:C_2$ (show 2), $D_8:C_2$ (show 2), $D_8:C_2$ (show 2), $C_2\times \SD_{16}$ (show 2), $C_4^2:C_2^2$ (show 4), $C_4^2:C_2^2$ (show 8), $\OD_{16}:D_4$ (show 4), $C_4^2:D_4$ (show 4), $C_4^2:D_4$ (show 8), $C_4^2.D_4$ (show 8), $C_4^2:D_4$ (show 4), $C_2\wr D_4$ (show 8), $C_2^5.(C_2\times D_4)$ (show 16), $C_2^4.(C_4\times D_4)$ (show 16), $C_2^7.(C_2\times D_4)$ (show 64) (incomplete) |
Hidden Artin slopes: | $[2]$ (show 8), $[2,2,\frac{7}{2}]$ (show 4), $[2,\frac{7}{2},\frac{17}{4}]$ (show 24), $[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4},\frac{19}{4}]$ (show 8), $[2,3,\frac{7}{2},4,\frac{17}{4}]$ (show 16), not computed (show 56), $[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]$ (show 16), $[2,\frac{7}{2}]$ (show 12), $[2,3,\frac{7}{2}]$ (show 8) (incomplete) |
Indices of inseparability: | $[24,16,8,0]$ |
Associated inertia: | $[1,1,1]$ |
Jump Set: | $[1,3,7,15]$ |
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.2.8.62a1.201 |
$( x^{2} + x + 1 )^{8} + \left(16 x + 8\right) ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 16 x + 2$ |
$C_4^2:D_4$ (as 16T359) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.218 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 )^{3} + 16 x + 2$ |
$C_4^2:D_4$ (as 16T359) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.542 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 16 x + 2$ |
$C_4^2:D_4$ (as 16T359) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.2.8.62a1.553 |
$( x^{2} + x + 1 )^{8} + \left(16 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + 16 ( x^{2} + x + 1 )^{3} + 16 x + 2$ |
$C_4^2:D_4$ (as 16T359) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[24, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |