These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.16.68e1.3073 |
$x^{16} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3074 |
$x^{16} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x^{3} + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3075 |
$x^{16} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3076 |
$x^{16} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x^{3} + 32 x + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3077 |
$x^{16} + 16 x^{15} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3078 |
$x^{16} + 16 x^{15} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x^{4} + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3079 |
$x^{16} + 16 x^{15} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3080 |
$x^{16} + 16 x^{15} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x^{4} + 32 x + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3081 |
$x^{16} + 16 x^{13} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3082 |
$x^{16} + 16 x^{13} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x^{4} + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3083 |
$x^{16} + 16 x^{13} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3084 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3085 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x^{4} + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3086 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3087 |
$x^{16} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3088 |
$x^{16} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x^{3} + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3089 |
$x^{16} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3090 |
$x^{16} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x^{3} + 32 x + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3091 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3092 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3093 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x^{4} + 32 x + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3094 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3095 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3096 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x^{4} + 32 x + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3097 |
$x^{16} + 4 x^{12} + 16 x^{9} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3098 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{9} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3099 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{9} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3100 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{9} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3101 |
$x^{16} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3102 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3103 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3104 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x + 10$ |
$(C_2^2\times C_4^2):D_8$ (as 16T1271) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3105 |
$x^{16} + 4 x^{12} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3106 |
$x^{16} + 4 x^{12} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 32 x^{4} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3107 |
$x^{16} + 16 x^{15} + 4 x^{12} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3108 |
$x^{16} + 16 x^{15} + 4 x^{12} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 32 x^{3} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3109 |
$x^{16} + 16 x^{13} + 4 x^{12} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3110 |
$x^{16} + 16 x^{13} + 4 x^{12} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 32 x^{3} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3111 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3112 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 32 x^{4} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3113 |
$x^{16} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3114 |
$x^{16} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 32 x^{3} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3115 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3116 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 32 x^{4} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3117 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3118 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 32 x^{4} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3119 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3120 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 32 x^{3} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3121 |
$x^{16} + 4 x^{12} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.68e1.3122 |
$x^{16} + 4 x^{12} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 32 x^{3} + 10$ |
$C_2^6:D_8$ (as 16T1265) |
$1024$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,\frac{39}{8},\frac{9}{2}]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,\frac{31}{8},\frac{7}{2}]_{2}$ |
$[53, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |