| \(x^{16} + 16 x^{15} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 16 x^{5} + 32 x^{4} + 32 x + 10\) ![Copy content]()  ![Toggle raw display]()  | 
  | Base field: | $\Q_{2}$ | 
| Degree $d$: | $16$ | 
      | Ramification index $e$: | $16$ | 
      | Residue field degree $f$: | $1$ | 
      | Discriminant exponent $c$: | $68$ | 
      | Discriminant root field: | $\Q_{2}(\sqrt{-5})$ | 
      | Root number: | $i$ | 
        | $\Aut(K/\Q_{2})$: | $C_2$ | 
    
      | This field is not Galois over $\Q_{2}.$ | 
      | Visible Artin slopes: | $[3, \frac{7}{2}, 4, \frac{21}{4}]$ | 
      | Visible Swan slopes: | $[2,\frac{5}{2},3,\frac{17}{4}]$ | 
      | Means: | $\langle1, \frac{7}{4}, \frac{19}{8}, \frac{53}{16}\rangle$ | 
      | Rams: | $(2, 3, 5, 15)$ | 
      | Jump set: | $[1, 3, 7, 15, 31]$ | 
      | Roots of unity: | $2$ | 
  Fields in the database are given up to isomorphism.  Isomorphic 
  intermediate fields are shown with their multiplicities.
       
    
      | Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ | 
      | Associated inertia: | $1$,$1$,$1$,$1$ | 
      | Indices of inseparability: | $[53, 38, 28, 16, 0]$ | 
    
  
  | Galois degree: | $1024$ | 
  | Galois group: | $(C_2^2\times C_4^2):D_8$ (as 16T1271) | 
  | Inertia group: | not computed | 
  | Wild inertia group: | not computed | 
  | Galois unramified degree: | $2$ | 
  | Galois tame degree: | $1$ | 
  | Galois Artin slopes: | $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]$ | 
| Galois Swan slopes: | $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8},\frac{17}{4}]$ | 
  | Galois mean slope: | $4.95703125$ | 
  | Galois splitting model: | not computed |