The following invariants arise for fields within the LMFDB; since not all fields in this family are stored, it may be incomplete.
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.16.64g1.1199 |
$x^{16} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_2\wr C_4$ (as 16T171) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]$ |
$[\frac{7}{2},\frac{17}{4}]$ |
$[\frac{5}{2},\frac{13}{4}]$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1200 |
$x^{16} + 16 x^{15} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_2^4.D_4$ (as 16T324) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1201 |
$x^{16} + 16 x^{13} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_2^3.D_4$ (as 16T160) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]$ |
$[\frac{7}{2},\frac{17}{4}]$ |
$[\frac{5}{2},\frac{13}{4}]$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1202 |
$x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_2^4.D_4$ (as 16T324) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1203 |
$x^{16} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_2^3.D_4$ (as 16T160) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]$ |
$[\frac{7}{2},\frac{17}{4}]$ |
$[\frac{5}{2},\frac{13}{4}]$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1204 |
$x^{16} + 16 x^{13} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_2\wr C_4$ (as 16T171) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]$ |
$[\frac{7}{2},\frac{17}{4}]$ |
$[\frac{5}{2},\frac{13}{4}]$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1205 |
$x^{16} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_2^4.D_4$ (as 16T324) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1206 |
$x^{16} + 16 x^{15} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_2\wr C_4$ (as 16T171) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]$ |
$[\frac{7}{2},\frac{17}{4}]$ |
$[\frac{5}{2},\frac{13}{4}]$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1207 |
$x^{16} + 16 x^{15} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 58$ |
$C_2\wr C_4$ (as 16T171) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]$ |
$[\frac{7}{2},\frac{17}{4}]$ |
$[\frac{5}{2},\frac{13}{4}]$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1208 |
$x^{16} + 16 x^{13} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_2^4.D_4$ (as 16T324) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1209 |
$x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_2^3.D_4$ (as 16T160) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]$ |
$[\frac{7}{2},\frac{17}{4}]$ |
$[\frac{5}{2},\frac{13}{4}]$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1210 |
$x^{16} + 16 x^{15} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_2^3.D_4$ (as 16T160) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]$ |
$[\frac{7}{2},\frac{17}{4}]$ |
$[\frac{5}{2},\frac{13}{4}]$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1211 |
$x^{16} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_4^2:D_4$ (as 16T400) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1212 |
$x^{16} + 16 x^{15} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_4^2:D_4$ (as 16T402) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1213 |
$x^{16} + 16 x^{13} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_4^2:D_4$ (as 16T394) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1214 |
$x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_2\wr D_4$ (as 16T396) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1215 |
$x^{16} + 16 x^{15} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_4^2:D_4$ (as 16T400) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1216 |
$x^{16} + 16 x^{13} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_2\wr D_4$ (as 16T396) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1217 |
$x^{16} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_4^2:D_4$ (as 16T402) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1218 |
$x^{16} + 16 x^{15} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_4^2:D_4$ (as 16T400) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1219 |
$x^{16} + 16 x^{13} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_2\wr D_4$ (as 16T396) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1220 |
$x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_4^2:D_4$ (as 16T394) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1221 |
$x^{16} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_2\wr D_4$ (as 16T396) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1222 |
$x^{16} + 16 x^{13} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 26$ |
$C_4^2:D_4$ (as 16T400) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1223 |
$x^{16} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$C_4^2:C_2^2$ (as 16T106) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1224 |
$x^{16} + 16 x^{15} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$C_4\wr C_2$ (as 16T42) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]$ |
$[1,2,\frac{5}{2},3,4]$ |
$[\frac{7}{2}]$ |
$[\frac{5}{2}]$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1225 |
$x^{16} + 16 x^{13} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$C_4\wr C_2$ (as 16T42) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]$ |
$[1,2,\frac{5}{2},3,4]$ |
$[\frac{7}{2}]$ |
$[\frac{5}{2}]$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1226 |
$x^{16} + 16 x^{13} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 58$ |
$C_4\wr C_2$ (as 16T42) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]$ |
$[1,2,\frac{5}{2},3,4]$ |
$[\frac{7}{2}]$ |
$[\frac{5}{2}]$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1227 |
$x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$C_4^2:C_2^2$ (as 16T106) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1228 |
$x^{16} + 16 x^{13} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$C_4\wr C_2$ (as 16T42) |
$32$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]$ |
$[1,2,\frac{5}{2},3,4]$ |
$[\frac{7}{2}]$ |
$[\frac{5}{2}]$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1229 |
$x^{16} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$C_4^2:C_2^2$ (as 16T175) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1230 |
$x^{16} + 16 x^{15} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$D_4:D_4$ (as 16T152) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1231 |
$x^{16} + 16 x^{13} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$D_4:D_4$ (as 16T152) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1232 |
$x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$C_4^2:C_2^2$ (as 16T175) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1233 |
$x^{16} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$D_8:C_2$ (as 16T47) |
$32$ |
$8$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1234 |
$x^{16} + 16 x^{15} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$QD_{16}$ (as 16T12) |
$16$ |
$16$ |
$[2, 3, 4, 5]$ |
$[1,2,3,4]$ |
$[\ ]$ |
$[\ ]$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1235 |
$x^{16} + 16 x^{15} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 58$ |
$QD_{16}$ (as 16T12) |
$16$ |
$16$ |
$[2, 3, 4, 5]$ |
$[1,2,3,4]$ |
$[\ ]$ |
$[\ ]$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1236 |
$x^{16} + 16 x^{13} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$Q_{16}:C_2$ (as 16T50) |
$32$ |
$8$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1237 |
$x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$D_8:C_2$ (as 16T35) |
$32$ |
$8$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1238 |
$x^{16} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$D_8:C_2$ (as 16T35) |
$32$ |
$8$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1239 |
$x^{16} + 16 x^{15} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$D_8:C_2$ (as 16T35) |
$32$ |
$8$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1240 |
$x^{16} + 16 x^{13} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$Q_{16}$ (as 16T14) |
$16$ |
$16$ |
$[2, 3, 4, 5]$ |
$[1,2,3,4]$ |
$[\ ]$ |
$[\ ]$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1241 |
$x^{16} + 16 x^{13} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 58$ |
$Q_{16}$ (as 16T14) |
$16$ |
$16$ |
$[2, 3, 4, 5]$ |
$[1,2,3,4]$ |
$[\ ]$ |
$[\ ]$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1242 |
$x^{16} + 16 x^{15} + 16 x^{13} + 16 x^{11} + 8 x^{10} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$D_8:C_2$ (as 16T47) |
$32$ |
$8$ |
$[2, 3, 4, 5]^{2}$ |
$[1,2,3,4]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1243 |
$x^{16} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$C_4^2:D_4$ (as 16T305) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,4]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1244 |
$x^{16} + 16 x^{15} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$C_4^2:D_4$ (as 16T305) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,4]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1245 |
$x^{16} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$C_2^6.D_4$ (as 16T835) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1246 |
$x^{16} + 16 x^{15} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$C_2^6.D_4$ (as 16T835) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1247 |
$x^{16} + 16 x^{13} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$C_2^6.D_4$ (as 16T835) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |
2.1.16.64g1.1248 |
$x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{10} + 2 x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 26$ |
$C_2^6.D_4$ (as 16T835) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, 5]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},4]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 32, 48]$ |