The following invariants arise for fields within the LMFDB; since not all fields in this family are stored, it may be incomplete.
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.16.64g1.4473 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2:C_2^2$ (as 16T111) |
$64$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4474 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 46$ |
$C_4^2:C_2^2$ (as 16T111) |
$64$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4477 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2:C_2^2$ (as 16T111) |
$64$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4478 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 46$ |
$C_4^2:C_2^2$ (as 16T111) |
$64$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4479 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2:C_2^2$ (as 16T111) |
$64$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4480 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 46$ |
$C_4^2:C_2^2$ (as 16T111) |
$64$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4483 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 14$ |
$C_4^2:C_2^2$ (as 16T111) |
$64$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
2.1.16.64g1.4484 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 4 x^{4} + 8 x^{2} + 16 x + 46$ |
$C_4^2:C_2^2$ (as 16T111) |
$64$ |
$8$ |
$[2, 3, \frac{7}{2}, 4, 5]^{2}$ |
$[1,2,\frac{5}{2},3,4]^{2}$ |
$[\frac{7}{2}]^{2}$ |
$[\frac{5}{2}]^{2}$ |
$[49, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |