\(x^{16} + 8 x^{10} + 16 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 16 x + 26\)
|
| Base field: | $\Q_{2}$
|
| Degree $d$: | $16$ |
| Ramification index $e$: | $16$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $64$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{2})$:
|
$C_2$ |
| This field is not Galois over $\Q_{2}.$ |
| Visible Artin slopes: | $[2, 3, 4, 5]$ |
| Visible Swan slopes: | $[1,2,3,4]$ |
| Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{17}{8}, \frac{49}{16}\rangle$ |
| Rams: | $(1, 3, 7, 15)$ |
| Jump set: | $[1, 2, 4, 32, 48]$ |
| Roots of unity: | $4 = 2^{ 2 }$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ |
| Associated inertia: | $1$,$1$,$1$,$1$ |
| Indices of inseparability: | $[49, 34, 20, 8, 0]$ |
| Galois degree: |
$128$
|
| Galois group: |
$C_2^4.D_4$ (as 16T324)
|
| Inertia group: |
not computed
|
| Wild inertia group: |
not computed
|
| Galois unramified degree: |
$2$
|
| Galois tame degree: |
$1$
|
| Galois Artin slopes: |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]$
|
| Galois Swan slopes: |
$[1,2,\frac{5}{2},3,\frac{13}{4},4]$
|
| Galois mean slope: |
$4.40625$
|
| Galois splitting model: | not computed |