These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.16.66j1.885 |
$x^{16} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 24 x^{4} + 16 x^{3} + 2$ |
$C_2\wr C_4$ (as 16T159) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.886 |
$x^{16} + 24 x^{12} + 8 x^{10} + 4 x^{8} + 24 x^{4} + 16 x^{3} + 2$ |
$C_2\wr C_4$ (as 16T159) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.887 |
$x^{16} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 24 x^{4} + 16 x^{3} + 2$ |
$C_2\wr C_4$ (as 16T159) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.888 |
$x^{16} + 24 x^{12} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 24 x^{4} + 16 x^{3} + 2$ |
$C_2\wr C_4$ (as 16T159) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.889 |
$x^{16} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 24 x^{4} + 16 x^{3} + 2$ |
$C_2\wr C_4$ (as 16T157) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.890 |
$x^{16} + 24 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 24 x^{4} + 16 x^{3} + 2$ |
$C_2\wr C_4$ (as 16T157) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.891 |
$x^{16} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 24 x^{4} + 16 x^{3} + 2$ |
$C_2\wr C_4$ (as 16T157) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.892 |
$x^{16} + 24 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 24 x^{4} + 16 x^{3} + 2$ |
$C_2\wr C_4$ (as 16T157) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.909 |
$x^{16} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 24 x^{4} + 16 x^{3} + 18$ |
$C_2\wr C_4$ (as 16T159) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.910 |
$x^{16} + 24 x^{12} + 8 x^{10} + 4 x^{8} + 24 x^{4} + 16 x^{3} + 18$ |
$C_2\wr C_4$ (as 16T159) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.911 |
$x^{16} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 24 x^{4} + 16 x^{3} + 18$ |
$C_2\wr C_4$ (as 16T159) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.912 |
$x^{16} + 24 x^{12} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 24 x^{4} + 16 x^{3} + 18$ |
$C_2\wr C_4$ (as 16T159) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.913 |
$x^{16} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 24 x^{4} + 16 x^{3} + 18$ |
$C_2\wr C_4$ (as 16T157) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.914 |
$x^{16} + 24 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 24 x^{4} + 16 x^{3} + 18$ |
$C_2\wr C_4$ (as 16T157) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.915 |
$x^{16} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 24 x^{4} + 16 x^{3} + 18$ |
$C_2\wr C_4$ (as 16T157) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.916 |
$x^{16} + 24 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 24 x^{4} + 16 x^{3} + 18$ |
$C_2\wr C_4$ (as 16T157) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.933 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2\wr C_4$ (as 16T157) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.934 |
$x^{16} + 8 x^{14} + 24 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2\wr C_4$ (as 16T157) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.935 |
$x^{16} + 8 x^{14} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2\wr C_4$ (as 16T157) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.936 |
$x^{16} + 8 x^{14} + 24 x^{12} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2\wr C_4$ (as 16T157) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.937 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2\wr C_4$ (as 16T159) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.938 |
$x^{16} + 8 x^{14} + 24 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2\wr C_4$ (as 16T159) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.939 |
$x^{16} + 8 x^{14} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2\wr C_4$ (as 16T159) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.940 |
$x^{16} + 8 x^{14} + 24 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2\wr C_4$ (as 16T159) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.953 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 18$ |
$C_2\wr C_4$ (as 16T157) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.954 |
$x^{16} + 8 x^{14} + 24 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 18$ |
$C_2\wr C_4$ (as 16T157) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.955 |
$x^{16} + 8 x^{14} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 18$ |
$C_2\wr C_4$ (as 16T157) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.956 |
$x^{16} + 8 x^{14} + 24 x^{12} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 18$ |
$C_2\wr C_4$ (as 16T157) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.957 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 18$ |
$C_2\wr C_4$ (as 16T159) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.958 |
$x^{16} + 8 x^{14} + 24 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 18$ |
$C_2\wr C_4$ (as 16T159) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.959 |
$x^{16} + 8 x^{14} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 18$ |
$C_2\wr C_4$ (as 16T159) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.960 |
$x^{16} + 8 x^{14} + 24 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 18$ |
$C_2\wr C_4$ (as 16T159) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |