Properties

Label 2.1.16.66j
Base 2.1.1.0a1.1
Degree \(16\)
e \(16\)
f \(1\)
c \(66\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{16} + 8 b_{46} x^{14} + \left(8 b_{44} + 16 c_{60}\right) x^{12} + 16 b_{59} x^{11} + 8 a_{42} x^{10} + 16 b_{57} x^{9} + 4 b_{24} x^{8} + 16 b_{55} x^{7} + 16 b_{53} x^{5} + \left(8 b_{36} + 16 c_{52}\right) x^{4} + 16 a_{51} x^{3} + 16 b_{50} x^{2} + 8 c_{32} + 16 c_{48} + 2$

Invariants

Residue field characteristic: $2$
Degree: $16$
Base field: $\Q_{2}$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $66$
Artin slopes: $[3,4,\frac{17}{4},\frac{19}{4}]$
Swan slopes: $[2,3,\frac{13}{4},\frac{15}{4}]$
Means: $\langle1,2,\frac{21}{8},\frac{51}{16}\rangle$
Rams: $(2,4,5,9)$
Field count: $1280$ (complete)
Ambiguity: $16$
Mass: $512$
Absolute Mass: $512$

Diagrams

Varying

Indices of inseparability: $[51,42,32,16,0]$
Associated inertia: $[1,1,1,1]$
Jump Set: $[1,3,7,15,31]$

Galois groups and Hidden Artin slopes

Select desired size of Galois group.

Fields


Showing 1-50 of at least 1000

Next   To download results, determine the number of results.
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.16.66j1.1 $x^{16} + 8 x^{10} + 16 x^{3} + 2$ $C_2^4.(C_4\times D_4)$ (as 16T867) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.2 $x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{3} + 2$ $C_2^4.(C_4\times D_4)$ (as 16T867) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.3 $x^{16} + 8 x^{10} + 16 x^{9} + 16 x^{3} + 2$ $C_2^4.(C_4\times D_4)$ (as 16T867) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.4 $x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{3} + 2$ $C_2^4.(C_4\times D_4)$ (as 16T867) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.5 $x^{16} + 8 x^{10} + 16 x^{7} + 16 x^{3} + 2$ $(C_2^2\times C_4^2):Q_8$ (as 16T950) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.6 $x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{7} + 16 x^{3} + 2$ $(C_2^2\times C_4^2):Q_8$ (as 16T950) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.7 $x^{16} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 16 x^{3} + 2$ $(C_2^2\times C_4^2):Q_8$ (as 16T950) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.8 $x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 16 x^{3} + 2$ $(C_2^2\times C_4^2):Q_8$ (as 16T950) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.9 $x^{16} + 8 x^{10} + 16 x^{5} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.10 $x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{5} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.11 $x^{16} + 16 x^{11} + 8 x^{10} + 16 x^{5} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.12 $x^{16} + 16 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{5} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.13 $x^{16} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.14 $x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.15 $x^{16} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.16 $x^{16} + 16 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.17 $x^{16} + 8 x^{10} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 2$ $C_2\wr D_4$ (as 16T395) $128$ $2$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2}]^{2}$ $[1,\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.18 $x^{16} + 16 x^{11} + 8 x^{10} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 2$ $C_2\wr D_4$ (as 16T395) $128$ $2$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2}]^{2}$ $[1,\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.19 $x^{16} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 2$ $C_4^2:D_4$ (as 16T365) $128$ $2$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2}]^{2}$ $[1,\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.20 $x^{16} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 2$ $C_4^2:D_4$ (as 16T365) $128$ $2$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2}]^{2}$ $[1,\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.21 $x^{16} + 8 x^{10} + 16 x^{4} + 16 x^{3} + 2$ $C_2^4.(C_4\times D_4)$ (as 16T867) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.22 $x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{4} + 16 x^{3} + 2$ $C_2^4.(C_4\times D_4)$ (as 16T867) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.23 $x^{16} + 8 x^{10} + 16 x^{9} + 16 x^{4} + 16 x^{3} + 2$ $C_2^4.(C_4\times D_4)$ (as 16T867) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.24 $x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{4} + 16 x^{3} + 2$ $C_2^4.(C_4\times D_4)$ (as 16T867) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.25 $x^{16} + 8 x^{10} + 16 x^{7} + 16 x^{4} + 16 x^{3} + 2$ $(C_2^2\times C_4^2):Q_8$ (as 16T950) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.26 $x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{7} + 16 x^{4} + 16 x^{3} + 2$ $(C_2^2\times C_4^2):Q_8$ (as 16T950) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.27 $x^{16} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 16 x^{4} + 16 x^{3} + 2$ $(C_2^2\times C_4^2):Q_8$ (as 16T950) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.28 $x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 16 x^{4} + 16 x^{3} + 2$ $(C_2^2\times C_4^2):Q_8$ (as 16T950) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,3,\frac{7}{2},4]^{2}$ $[1,2,\frac{5}{2},3]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.29 $x^{16} + 8 x^{10} + 16 x^{5} + 16 x^{4} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.30 $x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{5} + 16 x^{4} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.31 $x^{16} + 16 x^{11} + 8 x^{10} + 16 x^{5} + 16 x^{4} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.32 $x^{16} + 16 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{5} + 16 x^{4} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.33 $x^{16} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 16 x^{4} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.34 $x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 16 x^{4} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.35 $x^{16} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 16 x^{4} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.36 $x^{16} + 16 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 16 x^{4} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.37 $x^{16} + 8 x^{10} + 16 x^{7} + 16 x^{5} + 16 x^{4} + 16 x^{3} + 2$ $C_4^2:D_4$ (as 16T399) $128$ $2$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2}]^{2}$ $[1,\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.38 $x^{16} + 16 x^{11} + 8 x^{10} + 16 x^{7} + 16 x^{5} + 16 x^{4} + 16 x^{3} + 2$ $C_4^2:D_4$ (as 16T399) $128$ $2$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2}]^{2}$ $[1,\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.39 $x^{16} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 16 x^{5} + 16 x^{4} + 16 x^{3} + 2$ $C_4^2:D_4$ (as 16T341) $128$ $2$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2}]^{2}$ $[1,\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.40 $x^{16} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 16 x^{5} + 16 x^{4} + 16 x^{3} + 2$ $C_4^2:D_4$ (as 16T341) $128$ $2$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2}]^{2}$ $[1,\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.41 $x^{16} + 8 x^{14} + 8 x^{10} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.42 $x^{16} + 8 x^{14} + 16 x^{12} + 8 x^{10} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.43 $x^{16} + 8 x^{14} + 16 x^{11} + 8 x^{10} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.44 $x^{16} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.45 $x^{16} + 8 x^{14} + 8 x^{10} + 16 x^{9} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.46 $x^{16} + 8 x^{14} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.47 $x^{16} + 8 x^{14} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.48 $x^{16} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{3} + 2$ $C_2^6:D_4$ (as 16T969) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.49 $x^{16} + 8 x^{14} + 8 x^{10} + 16 x^{7} + 16 x^{3} + 2$ $C_4^2:D_4$ (as 16T365) $128$ $2$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2}]^{2}$ $[1,\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66j1.50 $x^{16} + 8 x^{14} + 16 x^{11} + 8 x^{10} + 16 x^{7} + 16 x^{3} + 2$ $C_4^2:D_4$ (as 16T365) $128$ $2$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2}]^{2}$ $[1,\frac{5}{2}]^{2}$ $[51, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
Next   To download results, determine the number of results.