These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.16.66j1.641 |
$x^{16} + 8 x^{10} + 4 x^{8} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.642 |
$x^{16} + 16 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.643 |
$x^{16} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.644 |
$x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.661 |
$x^{16} + 8 x^{10} + 4 x^{8} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.662 |
$x^{16} + 16 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.663 |
$x^{16} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.664 |
$x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.697 |
$x^{16} + 8 x^{14} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.698 |
$x^{16} + 8 x^{14} + 16 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.699 |
$x^{16} + 8 x^{14} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.700 |
$x^{16} + 8 x^{14} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.717 |
$x^{16} + 8 x^{14} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.718 |
$x^{16} + 8 x^{14} + 16 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.719 |
$x^{16} + 8 x^{14} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.720 |
$x^{16} + 8 x^{14} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.721 |
$x^{16} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.722 |
$x^{16} + 24 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.723 |
$x^{16} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.724 |
$x^{16} + 24 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.729 |
$x^{16} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{4} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.730 |
$x^{16} + 24 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{4} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.731 |
$x^{16} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{4} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.732 |
$x^{16} + 24 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{4} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.737 |
$x^{16} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.738 |
$x^{16} + 24 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.739 |
$x^{16} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.740 |
$x^{16} + 24 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.745 |
$x^{16} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{4} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.746 |
$x^{16} + 24 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{4} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.747 |
$x^{16} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{4} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.748 |
$x^{16} + 24 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{4} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |