These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.16.66j1.641 |
$x^{16} + 8 x^{10} + 4 x^{8} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.642 |
$x^{16} + 16 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.643 |
$x^{16} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.644 |
$x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{3} + 2$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.645 |
$x^{16} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{3} + 2$ |
$C_2\wr D_4$ (as 16T395) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.646 |
$x^{16} + 16 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{3} + 2$ |
$C_2\wr D_4$ (as 16T395) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.647 |
$x^{16} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{3} + 2$ |
$C_4^2:D_4$ (as 16T399) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.648 |
$x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{3} + 2$ |
$C_4^2:D_4$ (as 16T399) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.649 |
$x^{16} + 8 x^{10} + 4 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T971) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.650 |
$x^{16} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T971) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.651 |
$x^{16} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T971) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.652 |
$x^{16} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T971) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.653 |
$x^{16} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.654 |
$x^{16} + 16 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.655 |
$x^{16} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.656 |
$x^{16} + 16 x^{12} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.657 |
$x^{16} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.658 |
$x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.659 |
$x^{16} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.660 |
$x^{16} + 16 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.661 |
$x^{16} + 8 x^{10} + 4 x^{8} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.662 |
$x^{16} + 16 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.663 |
$x^{16} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.664 |
$x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{3} + 18$ |
$C_2^6:D_4$ (as 16T956) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.665 |
$x^{16} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{3} + 18$ |
$C_2\wr D_4$ (as 16T395) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.666 |
$x^{16} + 16 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{3} + 18$ |
$C_2\wr D_4$ (as 16T395) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.667 |
$x^{16} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{3} + 18$ |
$C_4^2:D_4$ (as 16T399) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.668 |
$x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{3} + 18$ |
$C_4^2:D_4$ (as 16T399) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.669 |
$x^{16} + 8 x^{10} + 4 x^{8} + 16 x^{5} + 16 x^{3} + 18$ |
$C_2^5.(C_2\times D_4)$ (as 16T971) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.670 |
$x^{16} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 16 x^{5} + 16 x^{3} + 18$ |
$C_2^5.(C_2\times D_4)$ (as 16T971) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.671 |
$x^{16} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{5} + 16 x^{3} + 18$ |
$C_2^5.(C_2\times D_4)$ (as 16T971) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.672 |
$x^{16} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{5} + 16 x^{3} + 18$ |
$C_2^5.(C_2\times D_4)$ (as 16T971) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.673 |
$x^{16} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 18$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.674 |
$x^{16} + 16 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 18$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.675 |
$x^{16} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 18$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.676 |
$x^{16} + 16 x^{12} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 18$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.677 |
$x^{16} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 18$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.678 |
$x^{16} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 18$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.679 |
$x^{16} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 18$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.680 |
$x^{16} + 16 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{5} + 16 x^{3} + 18$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.681 |
$x^{16} + 8 x^{14} + 8 x^{10} + 4 x^{8} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T971) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.682 |
$x^{16} + 8 x^{14} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T971) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.683 |
$x^{16} + 8 x^{14} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T971) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.684 |
$x^{16} + 8 x^{14} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T971) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.685 |
$x^{16} + 8 x^{14} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.686 |
$x^{16} + 8 x^{14} + 16 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.687 |
$x^{16} + 8 x^{14} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.688 |
$x^{16} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 8 x^{10} + 4 x^{8} + 16 x^{7} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.689 |
$x^{16} + 8 x^{14} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.690 |
$x^{16} + 8 x^{14} + 16 x^{12} + 8 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T938) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |