These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.3.4.30a1.29 |
$( x^{3} + x + 1 )^{4} + 4 ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + 10$ |
$D_4 \times C_3$ (as 12T14) |
$24$ |
$6$ |
$[2, 3, \frac{7}{2}]^{3}$ |
$[1,2,\frac{5}{2}]^{3}$ |
$[2]$ |
$[1]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + 1$ |
$[1, 3, 7]$ |
2.3.4.30a1.30 |
$( x^{3} + x + 1 )^{4} + 4 ( x^{3} + x + 1 )^{3} + 12 ( x^{3} + x + 1 )^{2} + 10$ |
$D_4 \times C_3$ (as 12T14) |
$24$ |
$6$ |
$[2, 3, \frac{7}{2}]^{3}$ |
$[1,2,\frac{5}{2}]^{3}$ |
$[2]$ |
$[1]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + 1$ |
$[1, 3, 7]$ |
2.3.4.30a1.31 |
$( x^{3} + x + 1 )^{4} + 4 ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + 8 x ( x^{3} + x + 1 ) + 10$ |
$D_4\times A_4$ (as 12T51) |
$96$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2}]^{3}$ |
$[2,2,2]$ |
$[1,1,1]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + 1$ |
$[1, 3, 7]$ |
2.3.4.30a1.32 |
$( x^{3} + x + 1 )^{4} + 4 ( x^{3} + x + 1 )^{3} + 12 ( x^{3} + x + 1 )^{2} + 8 x ( x^{3} + x + 1 ) + 10$ |
$D_4\times A_4$ (as 12T51) |
$96$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2}]^{3}$ |
$[2,2,2]$ |
$[1,1,1]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + 1$ |
$[1, 3, 7]$ |
2.3.4.30a2.25 |
$( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + 4 x^{2} ( x^{3} + x + 1 )^{2} + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + t$ |
$[1, 3, 7]$ |
2.3.4.30a2.26 |
$( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 8\right) ( x^{3} + x + 1 )^{2} + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + t$ |
$[1, 3, 7]$ |
2.3.4.30a2.27 |
$( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + 4 x^{2} ( x^{3} + x + 1 )^{2} + 8 x^{2} ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + t$ |
$[1, 3, 7]$ |
2.3.4.30a2.28 |
$( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 8\right) ( x^{3} + x + 1 )^{2} + 8 x^{2} ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + t$ |
$[1, 3, 7]$ |
2.3.4.30a2.29 |
$( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + 4 x^{2} ( x^{3} + x + 1 )^{2} + 8 ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + t$ |
$[1, 3, 7]$ |
2.3.4.30a2.30 |
$( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 8\right) ( x^{3} + x + 1 )^{2} + 8 ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + t$ |
$[1, 3, 7]$ |
2.3.4.30a2.31 |
$( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + 4 x^{2} ( x^{3} + x + 1 )^{2} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + t$ |
$[1, 3, 7]$ |
2.3.4.30a2.32 |
$( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 8\right) ( x^{3} + x + 1 )^{2} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 ) + 10$ |
$C_2\wr C_6$ (as 12T134) |
$384$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2},\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + t$ |
$[1, 3, 7]$ |
2.3.4.30a3.89 |
$( x^{3} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 4\right) ( x^{3} + x + 1 )^{2} + 10$ |
$C_2^3:A_4$ (as 12T58) |
$96$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t + 1)$ |
$[1, 3, 7]$ |
2.3.4.30a3.90 |
$( x^{3} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{3} + x + 1 )^{3} + \left(12 x^{2} + 4\right) ( x^{3} + x + 1 )^{2} + 10$ |
$C_2^4:A_4$ (as 12T87) |
$192$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[2,2,\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2}]^{2}$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t + 1)$ |
$[1, 3, 7]$ |
2.3.4.30a3.91 |
$( x^{3} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 4\right) ( x^{3} + x + 1 )^{2} + 8 x^{2} ( x^{3} + x + 1 ) + 10$ |
$C_2^4:A_4$ (as 12T87) |
$192$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,2,\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t + 1)$ |
$[1, 3, 7]$ |
2.3.4.30a3.92 |
$( x^{3} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{3} + x + 1 )^{3} + \left(12 x^{2} + 4\right) ( x^{3} + x + 1 )^{2} + 8 x^{2} ( x^{3} + x + 1 ) + 10$ |
$C_2^4:A_4$ (as 12T87) |
$192$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,2,\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t + 1)$ |
$[1, 3, 7]$ |
2.3.4.30a3.93 |
$( x^{3} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 4\right) ( x^{3} + x + 1 )^{2} + 8 ( x^{3} + x + 1 ) + 10$ |
$C_2^3:A_4$ (as 12T58) |
$96$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t + 1)$ |
$[1, 3, 7]$ |
2.3.4.30a3.94 |
$( x^{3} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{3} + x + 1 )^{3} + \left(12 x^{2} + 4\right) ( x^{3} + x + 1 )^{2} + 8 ( x^{3} + x + 1 ) + 10$ |
$C_2^4:A_4$ (as 12T87) |
$192$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{6}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{6}$ |
$[2,2,\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2}]^{2}$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t + 1)$ |
$[1, 3, 7]$ |
2.3.4.30a3.95 |
$( x^{3} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{3} + x + 1 )^{3} + \left(4 x^{2} + 4\right) ( x^{3} + x + 1 )^{2} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 ) + 10$ |
$C_2^4:A_4$ (as 12T87) |
$192$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,2,\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t + 1)$ |
$[1, 3, 7]$ |
2.3.4.30a3.96 |
$( x^{3} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{3} + x + 1 )^{3} + \left(12 x^{2} + 4\right) ( x^{3} + x + 1 )^{2} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 ) + 10$ |
$C_2^4:A_4$ (as 12T87) |
$192$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{3}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[2,2,2,\frac{7}{2}]$ |
$[1,1,1,\frac{5}{2}]$ |
$[7, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t + 1)$ |
$[1, 3, 7]$ |