Properties

Label 2.3.4.30a2.25
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(30\)
Galois group $C_2\wr C_6$ (as 12T134)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + x + 1 )^{4} + 4 x ( x^{3} + x + 1 )^{3} + 4 x^{2} ( x^{3} + x + 1 )^{2} + 10$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification index $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $30$
Discriminant root field: $\Q_{2}(\sqrt{-5})$
Root number: $i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, \frac{7}{2}]$
Visible Swan slopes:$[2,\frac{5}{2}]$
Means:$\langle1, \frac{7}{4}\rangle$
Rams:$(2, 3)$
Jump set:$[1, 3, 7]$
Roots of unity:$14 = (2^{ 3 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{-2\cdot 5})$, 2.3.1.0a1.1, 2.3.2.9a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.3.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 4 t x^{3} + \left(4 t^{2} + 8\right) x^{2} + 8 x + 10 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + (t + 1)$,$(t + 1) z + t$
Associated inertia:$1$,$1$
Indices of inseparability:$[7, 4, 0]$

Invariants of the Galois closure

Galois degree: $384$
Galois group: $C_2\wr C_6$ (as 12T134)
Inertia group: Intransitive group isomorphic to $C_2^3\wr C_2$
Wild inertia group: $C_2^3\wr C_2$
Galois unramified degree: $3$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}]$
Galois Swan slopes: $[1,1,1,2,\frac{5}{2},\frac{5}{2},\frac{5}{2}]$
Galois mean slope: $3.359375$
Galois splitting model:$x^{12} - 12 x^{10} + 42 x^{8} - 42 x^{6} - 9 x^{4} + 18 x^{2} + 3$