These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.12.35a1.65 |
$x^{12} + 10$ |
$S_3\times D_4$ (as 12T28) |
$48$ |
$2$ |
$[2, 3, 4]_{3}^{2}$ |
$[1,2,3]_{3}^{2}$ |
$[2]^{2}$ |
$[1]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.66 |
$x^{12} + 26$ |
$S_3\times D_4$ (as 12T28) |
$48$ |
$2$ |
$[2, 3, 4]_{3}^{2}$ |
$[1,2,3]_{3}^{2}$ |
$[2]^{2}$ |
$[1]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.67 |
$x^{12} + 8 x^{11} + 10$ |
$D_4\times S_4$ (as 12T86) |
$192$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2]^{2}$ |
$[\frac{1}{3},\frac{1}{3},1]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.68 |
$x^{12} + 8 x^{11} + 26$ |
$D_4\times S_4$ (as 12T86) |
$192$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2]^{2}$ |
$[\frac{1}{3},\frac{1}{3},1]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.69 |
$x^{12} + 8 x^{7} + 10$ |
$D_4\times S_4$ (as 12T86) |
$192$ |
$2$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, 4]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,3]_{3}^{2}$ |
$[2,\frac{8}{3},\frac{8}{3}]^{2}$ |
$[1,\frac{5}{3},\frac{5}{3}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.70 |
$x^{12} + 8 x^{7} + 26$ |
$D_4\times S_4$ (as 12T86) |
$192$ |
$2$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, 4]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,3]_{3}^{2}$ |
$[2,\frac{8}{3},\frac{8}{3}]^{2}$ |
$[1,\frac{5}{3},\frac{5}{3}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.71 |
$x^{12} + 8 x^{11} + 8 x^{7} + 10$ |
$D_4\times S_4$ (as 12T86) |
$192$ |
$2$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, 4]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,3]_{3}^{2}$ |
$[2,\frac{8}{3},\frac{8}{3}]^{2}$ |
$[1,\frac{5}{3},\frac{5}{3}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.72 |
$x^{12} + 8 x^{11} + 8 x^{7} + 26$ |
$D_4\times S_4$ (as 12T86) |
$192$ |
$2$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, 4]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,3]_{3}^{2}$ |
$[2,\frac{8}{3},\frac{8}{3}]^{2}$ |
$[1,\frac{5}{3},\frac{5}{3}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.73 |
$x^{12} + 8 x^{5} + 10$ |
$C_2\wr D_6$ (as 12T193) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.74 |
$x^{12} + 8 x^{5} + 26$ |
$C_2\wr D_6$ (as 12T193) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.75 |
$x^{12} + 8 x^{11} + 8 x^{5} + 10$ |
$C_2\wr D_6$ (as 12T193) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.76 |
$x^{12} + 8 x^{11} + 8 x^{5} + 26$ |
$C_2\wr D_6$ (as 12T193) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.77 |
$x^{12} + 8 x^{7} + 8 x^{5} + 10$ |
$C_2\wr D_6$ (as 12T193) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.78 |
$x^{12} + 8 x^{7} + 8 x^{5} + 26$ |
$C_2\wr D_6$ (as 12T193) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.79 |
$x^{12} + 8 x^{11} + 8 x^{7} + 8 x^{5} + 10$ |
$C_2\wr D_6$ (as 12T193) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.80 |
$x^{12} + 8 x^{11} + 8 x^{7} + 8 x^{5} + 26$ |
$C_2\wr D_6$ (as 12T193) |
$768$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.81 |
$x^{12} + 8 x^{3} + 10$ |
$D_{12}$ (as 12T12) |
$24$ |
$2$ |
$[3, 4]_{3}^{2}$ |
$[2,3]_{3}^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.82 |
$x^{12} + 8 x^{11} + 8 x^{3} + 10$ |
$C_4:S_4$ (as 12T54) |
$96$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 3, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3}]^{2}$ |
$[\frac{1}{3},\frac{1}{3}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.83 |
$x^{12} + 8 x^{9} + 8 x^{3} + 10$ |
$D_{12}$ (as 12T12) |
$24$ |
$2$ |
$[3, 4]_{3}^{2}$ |
$[2,3]_{3}^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.84 |
$x^{12} + 8 x^{11} + 8 x^{9} + 8 x^{3} + 10$ |
$C_4:S_4$ (as 12T54) |
$96$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 3, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3}]^{2}$ |
$[\frac{1}{3},\frac{1}{3}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.85 |
$x^{12} + 8 x^{7} + 8 x^{3} + 10$ |
$C_4:S_4$ (as 12T54) |
$96$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3}]^{2}$ |
$[\frac{5}{3},\frac{5}{3}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.86 |
$x^{12} + 8 x^{11} + 8 x^{7} + 8 x^{3} + 10$ |
$C_4:S_4$ (as 12T54) |
$96$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3}]^{2}$ |
$[\frac{5}{3},\frac{5}{3}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.87 |
$x^{12} + 8 x^{9} + 8 x^{7} + 8 x^{3} + 10$ |
$C_4:S_4$ (as 12T54) |
$96$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3}]^{2}$ |
$[\frac{5}{3},\frac{5}{3}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.88 |
$x^{12} + 8 x^{11} + 8 x^{9} + 8 x^{7} + 8 x^{3} + 10$ |
$C_4:S_4$ (as 12T54) |
$96$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3}]^{2}$ |
$[\frac{5}{3},\frac{5}{3}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.89 |
$x^{12} + 8 x^{5} + 8 x^{3} + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.90 |
$x^{12} + 8 x^{11} + 8 x^{5} + 8 x^{3} + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.91 |
$x^{12} + 8 x^{9} + 8 x^{5} + 8 x^{3} + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.92 |
$x^{12} + 8 x^{11} + 8 x^{9} + 8 x^{5} + 8 x^{3} + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.93 |
$x^{12} + 8 x^{7} + 8 x^{5} + 8 x^{3} + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.94 |
$x^{12} + 8 x^{11} + 8 x^{7} + 8 x^{5} + 8 x^{3} + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.95 |
$x^{12} + 8 x^{9} + 8 x^{7} + 8 x^{5} + 8 x^{3} + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.96 |
$x^{12} + 8 x^{11} + 8 x^{9} + 8 x^{7} + 8 x^{5} + 8 x^{3} + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3]_{3}^{2}$ |
$[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}$ |
$[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.97 |
$x^{12} + 8 x + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.98 |
$x^{12} + 8 x^{11} + 8 x + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.99 |
$x^{12} + 8 x^{9} + 8 x + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.100 |
$x^{12} + 8 x^{11} + 8 x^{9} + 8 x + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.101 |
$x^{12} + 8 x^{7} + 8 x + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.102 |
$x^{12} + 8 x^{11} + 8 x^{7} + 8 x + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.103 |
$x^{12} + 8 x^{9} + 8 x^{7} + 8 x + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.104 |
$x^{12} + 8 x^{11} + 8 x^{9} + 8 x^{7} + 8 x + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.105 |
$x^{12} + 8 x^{5} + 8 x + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.106 |
$x^{12} + 8 x^{11} + 8 x^{5} + 8 x + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.107 |
$x^{12} + 8 x^{9} + 8 x^{5} + 8 x + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.108 |
$x^{12} + 8 x^{11} + 8 x^{9} + 8 x^{5} + 8 x + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.109 |
$x^{12} + 8 x^{7} + 8 x^{5} + 8 x + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.110 |
$x^{12} + 8 x^{11} + 8 x^{7} + 8 x^{5} + 8 x + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.111 |
$x^{12} + 8 x^{9} + 8 x^{7} + 8 x^{5} + 8 x + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.112 |
$x^{12} + 8 x^{11} + 8 x^{9} + 8 x^{7} + 8 x^{5} + 8 x + 10$ |
$C_2^4:D_{12}$ (as 12T154) |
$384$ |
$2$ |
$[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.113 |
$x^{12} + 8 x^{3} + 8 x + 10$ |
$C_2\wr D_6$ (as 12T193) |
$768$ |
$2$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[2,\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |
2.1.12.35a1.114 |
$x^{12} + 8 x^{3} + 8 x + 26$ |
$C_2\wr D_6$ (as 12T193) |
$768$ |
$2$ |
$[2, \frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]_{3}^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]_{3}^{2}$ |
$[2,\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}$ |
$[1,\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}$ |
$[24, 12, 0]$ |
$[2, 1, 1]$ |
$z^8 + z^4 + 1,z^2 + 1,z + 1$ |
$[3, 9, 21]$ |