Properties

Label 2.1.12.35a1.110
Base \(\Q_{2}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(35\)
Galois group $C_2^4:D_{12}$ (as 12T154)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 8 x^{11} + 8 x^{7} + 8 x^{5} + 8 x + 10\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification index $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $35$
Discriminant root field: $\Q_{2}(\sqrt{-2})$
Root number: $i$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, 4]$
Visible Swan slopes:$[2,3]$
Means:$\langle1, 2\rangle$
Rams:$(6, 12)$
Jump set:$[3, 9, 21]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-2\cdot 5})$, 2.1.3.2a1.1, 2.1.6.11a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{12} + 8 x^{11} + 8 x^{7} + 8 x^{5} + 8 x + 10 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$2$,$1$,$1$
Indices of inseparability:$[24, 12, 0]$

Invariants of the Galois closure

Galois degree: $384$
Galois group: $C_2^4:D_{12}$ (as 12T154)
Inertia group: $C_2^4:C_{12}$ (as 12T105)
Wild inertia group: $C_2^4:C_4$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4]$
Galois Swan slopes: $[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3]$
Galois mean slope: $3.7604166666666665$
Galois splitting model:$x^{12} + 4 x^{10} + 70 x^{8} + 88 x^{6} - 682 x^{4} + 484 x^{2} - 242$