Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.
| Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
| 2.1.16.56l2.1 |
|
$x^{16} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 25, 41, 57]$ |
| 2.1.16.56l2.2 |
|
$x^{16} + 8 x^{15} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 25, 41, 57]$ |
| 2.1.16.56l2.3 |
|
$x^{16} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 25, 41, 57]$ |
| 2.1.16.56l2.4 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 25, 41, 57]$ |
| 2.1.16.56l2.5 |
|
$x^{16} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 25, 41, 57]$ |
| 2.1.16.56l2.6 |
|
$x^{16} + 8 x^{15} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 25, 41, 57]$ |
| 2.1.16.56l2.7 |
|
$x^{16} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 25, 41, 57]$ |
| 2.1.16.56l2.8 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 25, 41, 57]$ |
| 2.1.16.56l2.9 |
|
$x^{16} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 11, 25, 41, 57]$ |
| 2.1.16.56l2.10 |
|
$x^{16} + 8 x^{15} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 11, 25, 41, 57]$ |
| 2.1.16.56l2.11 |
|
$x^{16} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 11, 25, 41, 57]$ |
| 2.1.16.56l2.12 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 11, 25, 41, 57]$ |
| 2.1.16.56l2.13 |
|
$x^{16} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 11, 25, 41, 57]$ |
| 2.1.16.56l2.14 |
|
$x^{16} + 8 x^{15} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 11, 25, 41, 57]$ |
| 2.1.16.56l2.15 |
|
$x^{16} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 11, 25, 41, 57]$ |
| 2.1.16.56l2.16 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 11, 25, 41, 57]$ |
| 2.1.16.56l2.17 |
|
$x^{16} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l2.18 |
|
$x^{16} + 8 x^{15} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l2.19 |
|
$x^{16} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l2.20 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l2.21 |
|
$x^{16} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l2.22 |
|
$x^{16} + 8 x^{15} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l2.23 |
|
$x^{16} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l2.24 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l2.25 |
|
$x^{16} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l2.26 |
|
$x^{16} + 8 x^{15} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l2.27 |
|
$x^{16} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l2.28 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l2.29 |
|
$x^{16} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l2.30 |
|
$x^{16} + 8 x^{15} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l2.31 |
|
$x^{16} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l2.32 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 10$ |
$C_2^8:(C_2\times C_6)$ (as 16T1516) |
$3072$ |
$1$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]^{3}$ |
$[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]^{3}$ |
$[2,2,3,3,\frac{7}{2},\frac{7}{2}]^{3}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2}]^{3}$ |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l2.33 |
|
$x^{16} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.34 |
|
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.35 |
|
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.36 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.37 |
|
$x^{16} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.38 |
|
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.39 |
|
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.40 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.41 |
|
$x^{16} + 4 x^{12} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.42 |
|
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.43 |
|
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.44 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.45 |
|
$x^{16} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.46 |
|
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.47 |
|
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.48 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.49 |
|
$x^{16} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |
| 2.1.16.56l2.50 |
|
$x^{16} + 8 x^{15} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.(D_4\times A_4)$ (as 16T1655) |
$6144$ |
$1$ |
not computed |
not computed |
not computed |
not computed |
$[41, 34, 20, 8, 0]$ |
$[1, 1, 3]$ |
$z^8 + 1,z^4 + 1,z^3 + z + 1$ |
$[1, 7, 15, 31, 47]$ |