Properties

Label 2.1.16.56l2.36
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(56\)
Galois group $C_2^6.(D_4\times A_4)$ (as 16T1655)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $56$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_1$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, 4, 4]$
Visible Swan slopes:$[1,2,3,3]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{17}{8}, \frac{41}{16}\rangle$
Rams:$(1, 3, 7, 7)$
Jump set:$[1, 7, 15, 31, 47]$
Roots of unity:$4 = 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.1.4.8b1.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 8 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z^3 + z + 1$
Associated inertia:$1$,$1$,$3$
Indices of inseparability:$[41, 34, 20, 8, 0]$

Invariants of the Galois closure

Galois degree: $6144$
Galois group: $C_2^6.(D_4\times A_4)$ (as 16T1655)
Inertia group: $C_2^2\wr C_2^2$ (as 16T1152)
Wild inertia group: not computed
Galois unramified degree: $6$
Galois tame degree: $1$
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model: $x^{16} - 24 x^{14} - 16 x^{13} + 344 x^{12} - 224 x^{11} - 1704 x^{10} + 2264 x^{9} + 454 x^{8} + 4960 x^{7} - 20056 x^{6} - 31360 x^{5} + 24636 x^{4} + 9376 x^{3} + 200 x^{2} - 10256 x + 3914$ Copy content Toggle raw display