Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.
| Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
| 2.1.16.56l1.1 |
8 |
$x^{16} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T231) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 18, 34, 50]$ |
| 2.1.16.56l1.2 |
8 |
$x^{16} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$C_2^4.C_2^3$ (as 16T231) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 32, 48, 64]$ |
| 2.1.16.56l1.3 |
8 |
$x^{16} + 8 x^{15} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4:Q_8$ (as 16T384) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 31, 47, 63]$ |
| 2.1.16.56l1.4 |
8 |
$x^{16} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4:Q_8$ (as 16T384) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 31, 47, 63]$ |
| 2.1.16.56l1.5 |
8 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T231) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 18, 34, 50]$ |
| 2.1.16.56l1.6 |
8 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$C_2^4.C_2^3$ (as 16T231) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 32, 48, 64]$ |
| 2.1.16.56l1.7 |
16 |
$x^{16} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T229) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 29, 45, 61]$ |
| 2.1.16.56l1.8 |
16 |
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4:Q_8$ (as 16T368) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 29, 45, 61]$ |
| 2.1.16.56l1.9 |
16 |
$x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4:Q_8$ (as 16T368) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 29, 45, 61]$ |
| 2.1.16.56l1.10 |
16 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T229) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 29, 45, 61]$ |
| 2.1.16.56l1.11 |
8 |
$x^{16} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_4$ (as 16T284) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 27, 43, 59]$ |
| 2.1.16.56l1.12 |
8 |
$x^{16} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$C_2^4.D_4$ (as 16T284) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 27, 43, 59]$ |
| 2.1.16.56l1.13 |
32 |
$x^{16} + 8 x^{15} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T383) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 27, 43, 59]$ |
| 2.1.16.56l1.14 |
32 |
$x^{16} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T383) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 27, 43, 59]$ |
| 2.1.16.56l1.15 |
8 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_4$ (as 16T284) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 27, 43, 59]$ |
| 2.1.16.56l1.16 |
8 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ |
$C_2^4.D_4$ (as 16T284) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 27, 43, 59]$ |
| 2.1.16.56l1.17 |
8 |
$x^{16} + 8 x^{13} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_4$ (as 16T318) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 27, 43, 59]$ |
| 2.1.16.56l1.18 |
32 |
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T383) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 27, 43, 59]$ |
| 2.1.16.56l1.19 |
32 |
$x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T383) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 27, 43, 59]$ |
| 2.1.16.56l1.20 |
8 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_4$ (as 16T318) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 27, 43, 59]$ |
| 2.1.16.56l1.21 |
16 |
$x^{16} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T229) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 29, 45, 61]$ |
| 2.1.16.56l1.22 |
16 |
$x^{16} + 8 x^{15} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4:Q_8$ (as 16T368) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 29, 45, 61]$ |
| 2.1.16.56l1.23 |
16 |
$x^{16} + 8 x^{14} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4:Q_8$ (as 16T368) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 29, 45, 61]$ |
| 2.1.16.56l1.24 |
16 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T229) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 29, 45, 61]$ |
| 2.1.16.56l1.25 |
8 |
$x^{16} + 8 x^{11} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_4$ (as 16T318) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 27, 43, 59]$ |
| 2.1.16.56l1.26 |
32 |
$x^{16} + 8 x^{15} + 8 x^{11} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T383) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 27, 43, 59]$ |
| 2.1.16.56l1.27 |
32 |
$x^{16} + 8 x^{14} + 8 x^{11} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T383) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 27, 43, 59]$ |
| 2.1.16.56l1.28 |
8 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{11} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.D_4$ (as 16T318) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 27, 43, 59]$ |
| 2.1.16.56l1.29 |
32 |
$x^{16} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T383) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 27, 43, 59]$ |
| 2.1.16.56l1.30 |
32 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T383) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 27, 43, 59]$ |
| 2.1.16.56l1.31 |
8 |
$x^{16} + 8 x^{15} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^4:Q_8$ (as 16T384) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 31, 47, 63]$ |
| 2.1.16.56l1.32 |
8 |
$x^{16} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^4:Q_8$ (as 16T384) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 31, 47, 63]$ |
| 2.1.16.56l1.33 |
8 |
$x^{16} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 10$ |
$C_2^4:Q_8$ (as 16T384) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.34 |
8 |
$x^{16} + 8 x^{15} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 10$ |
$C_2^4.C_2^3$ (as 16T231) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.35 |
8 |
$x^{16} + 8 x^{15} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 26$ |
$C_2^4.C_2^3$ (as 16T231) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.36 |
8 |
$x^{16} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 10$ |
$C_2^4.C_2^3$ (as 16T231) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.37 |
8 |
$x^{16} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 26$ |
$C_2^4.C_2^3$ (as 16T231) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.38 |
8 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 10$ |
$C_2^4:Q_8$ (as 16T384) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.39 |
16 |
$x^{16} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 10$ |
$C_2^4:Q_8$ (as 16T368) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.40 |
16 |
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 10$ |
$C_2^4.C_2^3$ (as 16T229) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.41 |
16 |
$x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 10$ |
$C_2^4.C_2^3$ (as 16T229) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.42 |
16 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 10$ |
$C_2^4:Q_8$ (as 16T368) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.43 |
32 |
$x^{16} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 10$ |
$C_2^4.C_2^3$ (as 16T383) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.44 |
8 |
$x^{16} + 8 x^{15} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 10$ |
$C_2^4.D_4$ (as 16T284) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.45 |
8 |
$x^{16} + 8 x^{15} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 26$ |
$C_2^4.D_4$ (as 16T284) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.46 |
8 |
$x^{16} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 10$ |
$C_2^4.D_4$ (as 16T284) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.47 |
8 |
$x^{16} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 26$ |
$C_2^4.D_4$ (as 16T284) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.48 |
32 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 10$ |
$C_2^4.C_2^3$ (as 16T383) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.49 |
32 |
$x^{16} + 8 x^{13} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 10$ |
$C_2^4.C_2^3$ (as 16T383) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |
| 2.1.16.56l1.50 |
8 |
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 10$ |
$C_2^4.D_4$ (as 16T318) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 2, 4, 32, 48]$ |