Properties

Label 2.1.16.56l2.10
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(56\)
Galois group $C_2^8:(C_2\times C_6)$ (as 16T1516)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 8 x^{15} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $56$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_1$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, 4, 4]$
Visible Swan slopes:$[1,2,3,3]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{17}{8}, \frac{41}{16}\rangle$
Rams:$(1, 3, 7, 7)$
Jump set:$[1, 11, 25, 41, 57]$
Roots of unity:$8 = 2^{ 3 }$

Intermediate fields

$\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{2})$, $\Q_{2}(\sqrt{-2})$, 2.1.4.8b1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 8 x^{15} + 8 x^{9} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z^3 + z + 1$
Associated inertia:$1$,$1$,$3$
Indices of inseparability:$[41, 34, 20, 8, 0]$

Invariants of the Galois closure

Galois degree: $3072$
Galois group: $C_2^8:(C_2\times C_6)$ (as 16T1516)
Inertia group: $C_2^2\wr C_2^2$ (as 16T1152)
Wild inertia group: not computed
Galois unramified degree: $3$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 2, 3, 3, 3, \frac{7}{2}, \frac{7}{2}, 4, 4]$
Galois Swan slopes: $[1,1,1,2,2,2,\frac{5}{2},\frac{5}{2},3,3]$
Galois mean slope: $3.833984375$
Galois splitting model: $x^{16} + 24 x^{14} - 32 x^{13} + 232 x^{12} - 464 x^{11} + 1432 x^{10} - 2616 x^{9} + 4496 x^{8} - 5728 x^{7} + 4896 x^{6} - 1056 x^{5} - 2144 x^{4} + 816 x^{3} + 10368 x^{2} - 25912 x + 16361$ Copy content Toggle raw display