Properties

Label 2.1.16.48o
Base 2.1.1.0a1.1
Degree \(16\)
e \(16\)
f \(1\)
c \(48\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{16} + 4 b_{30} x^{14} + 4 b_{28} x^{12} + 4 a_{26} x^{10} + \left(2 a_{8} + 8 c_{40}\right) x^{8} + 8 b_{39} x^{7} + 8 b_{37} x^{5} + 4 b_{20} x^{4} + 8 b_{35} x^{3} + 8 a_{33} x + 4 c_{16} + 8 c_{32} + 2$

Invariants

Residue field characteristic: $2$
Degree: $16$
Base field: $\Q_{2}$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $48$
Artin slopes: $[2,3,3,\frac{7}{2}]$
Swan slopes: $[1,2,2,\frac{5}{2}]$
Means: $\langle\frac{1}{2},\frac{5}{4},\frac{13}{8},\frac{33}{16}\rangle$
Rams: $(1,3,3,7)$
Field count: $152$ (complete)
Ambiguity: $8$
Mass: $64$
Absolute Mass: $64$

Diagrams

Varying

Indices of inseparability: $[33,26,20,8,0]$ (show 64), $[33,26,24,8,0]$ (show 88)
Associated inertia: $[1,2,1]$ (show 88), $[1,3,1]$ (show 64)
Jump Set: $[1,2,4,8,32]$ (show 76), $[1,2,13,29,45]$ (show 32), $[1,5,10,32,48]$ (show 12), $[1,5,15,31,47]$ (show 20), $[1,5,17,33,49]$ (show 12)

Galois groups and Hidden Artin slopes

Select desired size of Galois group.

Fields


Showing 1-50 of 64

Next   displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.16.48o2.1 $x^{16} + 4 x^{10} + 2 x^{8} + 4 x^{4} + 8 x + 2$ $C_2^4:(C_2\times A_4)$ (as 16T723) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.2 $x^{16} + 4 x^{10} + 10 x^{8} + 4 x^{4} + 8 x + 2$ $C_2^4:(C_2\times A_4)$ (as 16T723) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.3 $x^{16} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x + 2$ $C_2\wr A_4$ (as 16T425) $192$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[2,2]^{3}$ $[1,1]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.4 $x^{16} + 4 x^{10} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 8 x + 2$ $C_2\wr A_4$ (as 16T425) $192$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[2,2]^{3}$ $[1,1]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.5 $x^{16} + 4 x^{10} + 2 x^{8} + 8 x^{5} + 4 x^{4} + 8 x + 2$ $C_2^4:(C_2\times A_4)$ (as 16T723) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.6 $x^{16} + 4 x^{10} + 10 x^{8} + 8 x^{5} + 4 x^{4} + 8 x + 2$ $C_2^4:(C_2\times A_4)$ (as 16T723) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.7 $x^{16} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 8 x + 2$ $C_2\wr A_4$ (as 16T425) $192$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[2,2]^{3}$ $[1,1]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.8 $x^{16} + 4 x^{10} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 8 x + 2$ $C_2\wr A_4$ (as 16T425) $192$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[2,2]^{3}$ $[1,1]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.9 $x^{16} + 4 x^{14} + 4 x^{10} + 2 x^{8} + 4 x^{4} + 8 x + 2$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.10 $x^{16} + 4 x^{14} + 4 x^{10} + 10 x^{8} + 4 x^{4} + 8 x + 2$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.11 $x^{16} + 4 x^{14} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x + 2$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.12 $x^{16} + 4 x^{14} + 4 x^{10} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 8 x + 2$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.13 $x^{16} + 4 x^{14} + 4 x^{10} + 2 x^{8} + 8 x^{5} + 4 x^{4} + 8 x + 2$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.14 $x^{16} + 4 x^{14} + 4 x^{10} + 10 x^{8} + 8 x^{5} + 4 x^{4} + 8 x + 2$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.15 $x^{16} + 4 x^{14} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 8 x + 2$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.16 $x^{16} + 4 x^{14} + 4 x^{10} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 8 x + 2$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.17 $x^{16} + 4 x^{12} + 4 x^{10} + 2 x^{8} + 4 x^{4} + 8 x + 2$ $C_2^4:(C_2\times A_4)$ (as 16T723) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.18 $x^{16} + 4 x^{12} + 4 x^{10} + 10 x^{8} + 4 x^{4} + 8 x + 2$ $C_2^4:(C_2\times A_4)$ (as 16T723) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.19 $x^{16} + 4 x^{12} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x + 2$ $(C_2^2\times C_4):A_4$ (as 16T428) $192$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[2,2]^{3}$ $[1,1]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.20 $x^{16} + 4 x^{12} + 4 x^{10} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 8 x + 2$ $(C_2^2\times C_4):A_4$ (as 16T428) $192$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[2,2]^{3}$ $[1,1]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.21 $x^{16} + 4 x^{12} + 4 x^{10} + 2 x^{8} + 8 x^{5} + 4 x^{4} + 8 x + 2$ $(C_2^2\times C_4):A_4$ (as 16T428) $192$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[2,2]^{3}$ $[1,1]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.22 $x^{16} + 4 x^{12} + 4 x^{10} + 10 x^{8} + 8 x^{5} + 4 x^{4} + 8 x + 2$ $(C_2^2\times C_4):A_4$ (as 16T428) $192$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[2,2]^{3}$ $[1,1]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.23 $x^{16} + 4 x^{12} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 8 x + 2$ $C_2^4:(C_2\times A_4)$ (as 16T723) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.24 $x^{16} + 4 x^{12} + 4 x^{10} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 8 x + 2$ $C_2^4:(C_2\times A_4)$ (as 16T723) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.25 $x^{16} + 4 x^{14} + 4 x^{12} + 4 x^{10} + 2 x^{8} + 4 x^{4} + 8 x + 2$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.26 $x^{16} + 4 x^{14} + 4 x^{12} + 4 x^{10} + 10 x^{8} + 4 x^{4} + 8 x + 2$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.27 $x^{16} + 4 x^{14} + 4 x^{12} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x + 2$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.28 $x^{16} + 4 x^{14} + 4 x^{12} + 4 x^{10} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 8 x + 2$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.29 $x^{16} + 4 x^{14} + 4 x^{12} + 4 x^{10} + 2 x^{8} + 8 x^{5} + 4 x^{4} + 8 x + 2$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.30 $x^{16} + 4 x^{14} + 4 x^{12} + 4 x^{10} + 10 x^{8} + 8 x^{5} + 4 x^{4} + 8 x + 2$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.31 $x^{16} + 4 x^{14} + 4 x^{12} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 8 x + 2$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.32 $x^{16} + 4 x^{14} + 4 x^{12} + 4 x^{10} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 8 x + 2$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 13, 29, 45]$
2.1.16.48o2.33 $x^{16} + 4 x^{10} + 2 x^{8} + 4 x^{4} + 8 x + 6$ $C_2\wr A_4$ (as 16T425) $192$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[2,2]^{3}$ $[1,1]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.34 $x^{16} + 4 x^{10} + 10 x^{8} + 4 x^{4} + 8 x + 6$ $C_2\wr A_4$ (as 16T425) $192$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[2,2]^{3}$ $[1,1]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.35 $x^{16} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x + 6$ $C_2^4:(C_2\times A_4)$ (as 16T723) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.36 $x^{16} + 4 x^{10} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 8 x + 6$ $C_2^4:(C_2\times A_4)$ (as 16T723) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.37 $x^{16} + 4 x^{10} + 2 x^{8} + 8 x^{5} + 4 x^{4} + 8 x + 6$ $C_2^4:(C_2\times A_4)$ (as 16T723) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.38 $x^{16} + 4 x^{10} + 10 x^{8} + 8 x^{5} + 4 x^{4} + 8 x + 6$ $C_2^4:(C_2\times A_4)$ (as 16T723) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.39 $x^{16} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 8 x + 6$ $C_2\wr A_4$ (as 16T425) $192$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[2,2]^{3}$ $[1,1]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.40 $x^{16} + 4 x^{10} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 8 x + 6$ $C_2\wr A_4$ (as 16T425) $192$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,\frac{5}{2}]^{3}$ $[2,2]^{3}$ $[1,1]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.41 $x^{16} + 4 x^{14} + 4 x^{10} + 2 x^{8} + 4 x^{4} + 8 x + 6$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.42 $x^{16} + 4 x^{14} + 4 x^{10} + 10 x^{8} + 4 x^{4} + 8 x + 6$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.43 $x^{16} + 4 x^{14} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x + 6$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.44 $x^{16} + 4 x^{14} + 4 x^{10} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 8 x + 6$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.45 $x^{16} + 4 x^{14} + 4 x^{10} + 2 x^{8} + 8 x^{5} + 4 x^{4} + 8 x + 6$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.46 $x^{16} + 4 x^{14} + 4 x^{10} + 10 x^{8} + 8 x^{5} + 4 x^{4} + 8 x + 6$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.47 $x^{16} + 4 x^{14} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 8 x + 6$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.48 $x^{16} + 4 x^{14} + 4 x^{10} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 8 x + 6$ $C_2\wr C_6$ (as 16T719) $384$ $2$ $[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{3}$ $[1,1,1,2,2,2,\frac{5}{2}]^{3}$ $[2,2,3]^{3}$ $[1,1,2]^{3}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.49 $x^{16} + 4 x^{12} + 4 x^{10} + 2 x^{8} + 4 x^{4} + 8 x + 6$ $C_2^4:(C_2\times A_4)$ (as 16T723) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.48o2.50 $x^{16} + 4 x^{12} + 4 x^{10} + 10 x^{8} + 4 x^{4} + 8 x + 6$ $C_2^4:(C_2\times A_4)$ (as 16T723) $384$ $2$ $[2, 2, 2, 3, 3, \frac{7}{2}]^{6}$ $[1,1,1,2,2,\frac{5}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[33, 26, 20, 8, 0]$ $[1, 3, 1]$ $z^8 + 1,z^6 + z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
Next   displayed columns for results