\(x^{16} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 8 x + 2\)
|
| Base field: | $\Q_{2}$
|
| Degree $d$: | $16$ |
| Ramification index $e$: | $16$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $48$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $-1$ |
| $\Aut(K/\Q_{2})$:
|
$C_2$ |
| This field is not Galois over $\Q_{2}.$ |
| Visible Artin slopes: | $[2, 3, 3, \frac{7}{2}]$ |
| Visible Swan slopes: | $[1,2,2,\frac{5}{2}]$ |
| Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{13}{8}, \frac{33}{16}\rangle$ |
| Rams: | $(1, 3, 3, 7)$ |
| Jump set: | $[1, 2, 13, 29, 45]$ |
| Roots of unity: | $4 = 2^{ 2 }$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Galois degree: |
$192$
|
| Galois group: |
$C_2\wr A_4$ (as 16T425)
|
| Inertia group: |
$C_2\wr C_2^2$ (as 16T147)
|
| Wild inertia group: |
$C_2\wr C_2^2$
|
| Galois unramified degree: |
$3$
|
| Galois tame degree: |
$1$
|
| Galois Artin slopes: |
$[2, 2, 2, 3, 3, \frac{7}{2}]$
|
| Galois Swan slopes: |
$[1,1,1,2,2,\frac{5}{2}]$
|
| Galois mean slope: |
$3.09375$
|
| Galois splitting model: |
$x^{16} + 8 x^{14} + 28 x^{12} + 56 x^{10} - 168 x^{8} - 224 x^{6} + 168 x^{4} + 176 x^{2} + 36$
|