Properties

Label 2.1.16.48o2.33
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(48\)
Galois group $C_2\wr A_4$ (as 16T425)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 4 x^{10} + 2 x^{8} + 4 x^{4} + 8 x + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $48$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, 3, \frac{7}{2}]$
Visible Swan slopes:$[1,2,2,\frac{5}{2}]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{13}{8}, \frac{33}{16}\rangle$
Rams:$(1, 3, 3, 7)$
Jump set:$[1, 2, 4, 8, 32]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-5})$, 2.1.8.20d2.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 4 x^{10} + 2 x^{8} + 4 x^{4} + 8 x + 6 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^6 + z^2 + 1$,$z + 1$
Associated inertia:$1$,$3$,$1$
Indices of inseparability:$[33, 26, 20, 8, 0]$

Invariants of the Galois closure

Galois degree: $192$
Galois group: $C_2\wr A_4$ (as 16T425)
Inertia group: $C_2\wr C_2^2$ (as 16T147)
Wild inertia group: $C_2\wr C_2^2$
Galois unramified degree: $3$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 2, 3, 3, \frac{7}{2}]$
Galois Swan slopes: $[1,1,1,2,2,\frac{5}{2}]$
Galois mean slope: $3.09375$
Galois splitting model: $x^{16} - 16 x^{14} + 88 x^{12} - 208 x^{10} + 178 x^{8} - 16 x^{6} - 104 x^{4} + 80 x^{2} + 1$ Copy content Toggle raw display