Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.
| Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
| 2.1.16.40c1.1 |
|
$x^{16} + 2 x^{14} + 4 x^{9} + 2$ |
$C_2^4:(C_2\times A_4)$ (as 16T716) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{3}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{3}$ |
$[3,3,3]^{3}$ |
$[2,2,2]^{3}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.2 |
|
$x^{16} + 2 x^{14} + 4 x^{9} + 8 x^{4} + 2$ |
$C_2^4:(C_2\times A_4)$ (as 16T716) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{3}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{3}$ |
$[3,3,3]^{3}$ |
$[2,2,2]^{3}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.3 |
|
$x^{16} + 2 x^{14} + 4 x^{9} + 8 x^{3} + 2$ |
$C_2^4:(C_2\times A_4)$ (as 16T716) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{3}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{3}$ |
$[3,3,3]^{3}$ |
$[2,2,2]^{3}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.4 |
|
$x^{16} + 2 x^{14} + 4 x^{9} + 8 x^{4} + 8 x^{3} + 2$ |
$C_2^4:(C_2\times A_4)$ (as 16T716) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{3}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{3}$ |
$[3,3,3]^{3}$ |
$[2,2,2]^{3}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.5 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{9} + 2$ |
$(D_4\times C_2^3):A_4$ (as 16T1037) |
$768$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[3,3,3]^{6}$ |
$[2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.6 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{9} + 8 x^{4} + 2$ |
$(D_4\times C_2^3):A_4$ (as 16T1037) |
$768$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[3,3,3]^{6}$ |
$[2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.7 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{9} + 8 x^{3} + 2$ |
$(D_4\times C_2^3):A_4$ (as 16T1037) |
$768$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[3,3,3]^{6}$ |
$[2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.8 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{9} + 8 x^{4} + 8 x^{3} + 2$ |
$(D_4\times C_2^3):A_4$ (as 16T1037) |
$768$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[3,3,3]^{6}$ |
$[2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.9 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 2$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.10 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x^{4} + 2$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.11 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x + 2$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.12 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x^{4} + 8 x + 2$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.13 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 2$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.14 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x^{3} + 2$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.15 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x^{4} + 8 x^{3} + 2$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.16 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x + 2$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.17 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x^{4} + 8 x + 2$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.18 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x^{3} + 8 x + 2$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.19 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 4 x^{9} + 2$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.20 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 4 x^{9} + 8 x^{4} + 2$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.21 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 4 x^{9} + 8 x + 2$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.22 |
|
$x^{16} + 2 x^{14} + 4 x^{11} + 4 x^{9} + 8 x^{4} + 8 x + 2$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.23 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 4 x^{9} + 2$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.24 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{11} + 4 x^{9} + 8 x^{3} + 8 x + 2$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.25 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 4 x^{9} + 2$ |
$C_2^4:(C_2\times A_4)$ (as 16T716) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{3}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{3}$ |
$[3,3,3]^{3}$ |
$[2,2,2]^{3}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.26 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 4 x^{9} + 8 x^{4} + 2$ |
$C_2^4:(C_2\times A_4)$ (as 16T716) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{3}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{3}$ |
$[3,3,3]^{3}$ |
$[2,2,2]^{3}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.27 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 4 x^{9} + 8 x^{3} + 2$ |
$C_2^4:(C_2\times A_4)$ (as 16T716) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{3}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{3}$ |
$[3,3,3]^{3}$ |
$[2,2,2]^{3}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.28 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 4 x^{9} + 8 x^{4} + 8 x^{3} + 2$ |
$C_2^4:(C_2\times A_4)$ (as 16T716) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{3}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{3}$ |
$[3,3,3]^{3}$ |
$[2,2,2]^{3}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.29 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 4 x^{9} + 2$ |
$(D_4\times C_2^3):A_4$ (as 16T1037) |
$768$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[3,3,3]^{6}$ |
$[2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.30 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 4 x^{9} + 8 x^{4} + 2$ |
$(D_4\times C_2^3):A_4$ (as 16T1037) |
$768$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[3,3,3]^{6}$ |
$[2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.31 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 4 x^{9} + 8 x^{3} + 2$ |
$(D_4\times C_2^3):A_4$ (as 16T1037) |
$768$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[3,3,3]^{6}$ |
$[2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.32 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{11} + 4 x^{9} + 8 x^{4} + 8 x^{3} + 2$ |
$(D_4\times C_2^3):A_4$ (as 16T1037) |
$768$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[3,3,3]^{6}$ |
$[2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 23, 39]$ |
| 2.1.16.40c1.33 |
|
$x^{16} + 2 x^{14} + 4 x^{9} + 6$ |
$(D_4\times C_2^3):A_4$ (as 16T1037) |
$768$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[3,3,3]^{6}$ |
$[2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.34 |
|
$x^{16} + 2 x^{14} + 4 x^{9} + 8 x^{4} + 6$ |
$(D_4\times C_2^3):A_4$ (as 16T1037) |
$768$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[3,3,3]^{6}$ |
$[2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.35 |
|
$x^{16} + 2 x^{14} + 4 x^{9} + 8 x^{3} + 6$ |
$(D_4\times C_2^3):A_4$ (as 16T1037) |
$768$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[3,3,3]^{6}$ |
$[2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.36 |
|
$x^{16} + 2 x^{14} + 4 x^{9} + 8 x^{4} + 8 x^{3} + 6$ |
$(D_4\times C_2^3):A_4$ (as 16T1037) |
$768$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[3,3,3]^{6}$ |
$[2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.37 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{9} + 6$ |
$C_2^4:(C_2\times A_4)$ (as 16T716) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{3}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{3}$ |
$[3,3,3]^{3}$ |
$[2,2,2]^{3}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.38 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{9} + 8 x^{4} + 6$ |
$C_2^4:(C_2\times A_4)$ (as 16T716) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{3}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{3}$ |
$[3,3,3]^{3}$ |
$[2,2,2]^{3}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.39 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{9} + 8 x^{3} + 6$ |
$C_2^4:(C_2\times A_4)$ (as 16T716) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{3}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{3}$ |
$[3,3,3]^{3}$ |
$[2,2,2]^{3}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.40 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{9} + 8 x^{4} + 8 x^{3} + 6$ |
$C_2^4:(C_2\times A_4)$ (as 16T716) |
$384$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{3}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{3}$ |
$[3,3,3]^{3}$ |
$[2,2,2]^{3}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.41 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.42 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x^{4} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.43 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x^{3} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.44 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.45 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x^{3} + 8 x + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.46 |
|
$x^{16} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x^{4} + 8 x^{3} + 8 x + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.47 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.48 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x^{4} + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
not computed |
not computed |
not computed |
not computed |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.49 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |
| 2.1.16.40c1.50 |
|
$x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x^{4} + 8 x + 6$ |
$C_2\wr C_2^3:C_3$ (as 16T1658) |
$6144$ |
$2$ |
$[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]^{6}$ |
$[1,1,1,1,1,1,2,2,2,\frac{9}{4}]^{6}$ |
$[2,2,2,3,3,3]^{6}$ |
$[1,1,1,2,2,2]^{6}$ |
$[25, 14, 14, 14, 0]$ |
$[3, 1]$ |
$z^{14} + 1,z + 1$ |
$[1, 3, 7, 14, 32]$ |