\(x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{9} + 8 x^{4} + 8 x^{3} + 6\)
|
| Base field: | $\Q_{2}$
|
| Degree $d$: | $16$ |
| Ramification index $e$: | $16$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $40$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $-1$ |
| $\Aut(K/\Q_{2})$:
|
$C_2$ |
| This field is not Galois over $\Q_{2}.$ |
| Visible Artin slopes: | $[2, 2, 2, \frac{13}{4}]$ |
| Visible Swan slopes: | $[1,1,1,\frac{9}{4}]$ |
| Means: | $\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{25}{16}\rangle$ |
| Rams: | $(1, 1, 1, 11)$ |
| Jump set: | $[1, 3, 7, 14, 32]$ |
| Roots of unity: | $2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Galois degree: |
$384$
|
| Galois group: |
$C_2^4:(C_2\times A_4)$ (as 16T716)
|
| Inertia group: |
not computed
|
| Wild inertia group: |
not computed
|
| Galois unramified degree: |
$3$
|
| Galois tame degree: |
$1$
|
| Galois Artin slopes: |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]$
|
| Galois Swan slopes: |
$[1,1,1,2,2,2,\frac{9}{4}]$
|
| Galois mean slope: |
$3.046875$
|
| Galois splitting model: | not computed |