Properties

Label 2.1.16.40c1.50
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(40\)
Galois group $C_2\wr C_2^3:C_3$ (as 16T1658)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x^{4} + 8 x + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $40$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2, 2, \frac{13}{4}]$
Visible Swan slopes:$[1,1,1,\frac{9}{4}]$
Means:$\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{25}{16}\rangle$
Rams:$(1, 1, 1, 11)$
Jump set:$[1, 3, 7, 14, 32]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{-5})$, 2.1.4.6a2.1, 2.1.8.14a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 4 x^{9} + 8 x^{4} + 8 x + 6 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{14} + 1$,$z + 1$
Associated inertia:$3$,$1$
Indices of inseparability:$[25, 14, 14, 14, 0]$

Invariants of the Galois closure

Galois degree: $6144$
Galois group: $C_2\wr C_2^3:C_3$ (as 16T1658)
Inertia group: $C_2^7:C_2^3$ (as 16T1082)
Wild inertia group: not computed
Galois unramified degree: $6$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 2, 2, 2, 2, 3, 3, 3, \frac{13}{4}]$
Galois Swan slopes: $[1,1,1,1,1,1,2,2,2,\frac{9}{4}]$
Galois mean slope: $3.060546875$
Galois splitting model: $x^{16} - 8 x^{15} + 34 x^{14} - 76 x^{13} + 116 x^{12} - 124 x^{11} + 80 x^{10} + 20 x^{9} - 76 x^{8} - 272 x^{7} + 748 x^{6} + 1336 x^{5} - 632 x^{4} - 968 x^{3} + 952 x^{2} + 1272 x + 366$ Copy content Toggle raw display