Label |
$p$ |
$n$ |
$n_0$ |
$n_{\mathrm{abs}}$ |
$f$ |
$f_0$ |
$f_{\mathrm{abs}}$ |
$e$ |
$e_0$ |
$e_{\mathrm{abs}}$ |
$c$ |
$c_0$ |
$c_{\mathrm{abs}}$ |
Base |
Abs. Artin slopes |
Swan slopes |
Means |
Rams |
Generic poly |
Ambiguity |
Field count |
Mass |
Mass (absolute) |
Mass stored |
Mass found |
Wild segments |
2.2.8.32c |
$2$ |
$16$ |
$1$ |
$16$ |
$2$ |
$1$ |
$2$ |
$8$ |
$1$ |
$8$ |
$32$ |
$0$ |
$32$ |
$\Q_{2}$ |
$[2, 2, \frac{5}{2}]$ |
$[1, 1, \frac{3}{2}]$ |
$\langle\frac{1}{2}, \frac{3}{4}, \frac{9}{8}\rangle$ |
$(1, 1, 3)$ |
$x^8 + 2 a_{6} x^6 + (2 b_{4} + 4 c_{12}) x^4 + 4 b_{11} x^3 + 4 a_{9} x + 4 c_{8} + 2$ |
$16$ |
$167$ |
$144$ |
$72$ |
$72$ |
$100\%$ |
$2$ |
2.2.1.0a1.1-1.8.16c |
$2$ |
$8$ |
$2$ |
$16$ |
$1$ |
$2$ |
$2$ |
$8$ |
$1$ |
$8$ |
$16$ |
$0$ |
$16$ |
$\Q_{2}(\sqrt{5})$ |
$[2, 2, \frac{5}{2}]$ |
$[1, 1, \frac{3}{2}]$ |
$\langle\frac{1}{2}, \frac{3}{4}, \frac{9}{8}\rangle$ |
$(1, 1, 3)$ |
$x^8 + 2 a_{6} x^6 + (2 b_{4} + 4 c_{12}) x^4 + 4 b_{11} x^3 + 4 a_{9} x + 4 c_{8} + 2$ |
$8$ |
$167$ |
$144$ |
$72$ |
$72$ |
$100\%$ |
$2$ |
2.1.2.2a1.1-2.4.16b |
$2$ |
$8$ |
$2$ |
$16$ |
$2$ |
$1$ |
$2$ |
$4$ |
$2$ |
$8$ |
$16$ |
$2$ |
$18$ |
$\Q_{2}(\sqrt{-1})$ |
$[2, 2, \frac{5}{2}]$ |
$[1, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
$(1, 3)$ |
$x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ |
$8$ |
$26$ |
$36$ |
$9$ |
$9$ |
$100\%$ |
$2$ |
2.1.2.2a1.2-2.4.16b |
$2$ |
$8$ |
$2$ |
$16$ |
$2$ |
$1$ |
$2$ |
$4$ |
$2$ |
$8$ |
$16$ |
$2$ |
$18$ |
$\Q_{2}(\sqrt{-5})$ |
$[2, 2, \frac{5}{2}]$ |
$[1, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
$(1, 3)$ |
$x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ |
$8$ |
$26$ |
$36$ |
$9$ |
$9$ |
$100\%$ |
$2$ |
2.2.2.4a1.1-1.4.8b |
$2$ |
$4$ |
$4$ |
$16$ |
$1$ |
$2$ |
$2$ |
$4$ |
$2$ |
$8$ |
$8$ |
$4$ |
$9$ |
2.2.2.4a1.1 |
$[2, 2, \frac{5}{2}]$ |
$[1, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
$(1, 3)$ |
$x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ |
$4$ |
$26$ |
$36$ |
$9$ |
$9$ |
$100\%$ |
$2$ |
2.2.2.4a1.2-1.4.8b |
$2$ |
$4$ |
$4$ |
$16$ |
$1$ |
$2$ |
$2$ |
$4$ |
$2$ |
$8$ |
$8$ |
$4$ |
$9$ |
2.2.2.4a1.2 |
$[2, 2, \frac{5}{2}]$ |
$[1, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
$(1, 3)$ |
$x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ |
$4$ |
$23$ |
$36$ |
$9$ |
$9$ |
$100\%$ |
$2$ |
2.2.2.4a2.1-1.4.8b |
$2$ |
$4$ |
$4$ |
$16$ |
$1$ |
$2$ |
$2$ |
$4$ |
$2$ |
$8$ |
$8$ |
$4$ |
$9$ |
2.2.2.4a2.1 |
$[2, 2, \frac{5}{2}]$ |
$[1, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
$(1, 3)$ |
$x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ |
$4$ |
$43$ |
$36$ |
$18$ |
$33/2$ |
$91.67\%$ |
$2$ |
2.2.2.4a2.2-1.4.8b |
$2$ |
$4$ |
$4$ |
$16$ |
$1$ |
$2$ |
$2$ |
$4$ |
$2$ |
$8$ |
$8$ |
$4$ |
$9$ |
2.2.2.4a2.2 |
$[2, 2, \frac{5}{2}]$ |
$[1, 2]$ |
$\langle\frac{1}{2}, \frac{5}{4}\rangle$ |
$(1, 3)$ |
$x^4 + b_{7} \pi^2 x^3 + a_{2} \pi x^2 + a_{5} \pi^2 x + c_{8} \pi^3 + c_{4} \pi^2 + \pi$ |
$4$ |
$43$ |
$36$ |
$18$ |
$33/2$ |
$91.67\%$ |
$2$ |
2.1.4.6a1.1-2.2.8a |
$2$ |
$4$ |
$4$ |
$16$ |
$2$ |
$1$ |
$2$ |
$2$ |
$4$ |
$8$ |
$8$ |
$6$ |
$14$ |
2.1.4.6a1.1 |
$[2, 2, \frac{5}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$6$ |
$12$ |
$3$ |
$3/2$ |
$50.00\%$ |
$1$ |
2.1.4.6a1.2-2.2.8a |
$2$ |
$4$ |
$4$ |
$16$ |
$2$ |
$1$ |
$2$ |
$2$ |
$4$ |
$8$ |
$8$ |
$6$ |
$14$ |
2.1.4.6a1.2 |
$[2, 2, \frac{5}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$6$ |
$12$ |
$3$ |
$3/2$ |
$50.00\%$ |
$1$ |
2.1.4.6a2.1-2.2.8a |
$2$ |
$4$ |
$4$ |
$16$ |
$2$ |
$1$ |
$2$ |
$2$ |
$4$ |
$8$ |
$8$ |
$6$ |
$14$ |
2.1.4.6a2.1 |
$[2, 2, \frac{5}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$4$ |
$14$ |
$12$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
2.2.4.12a1.1-1.2.4a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$12$ |
$7$ |
2.2.4.12a1.1 |
$[2, 2, \frac{5}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$2$ |
$6$ |
$12$ |
$3/2$ |
$3/2$ |
$100\%$ |
$1$ |
2.2.4.12a1.2-1.2.4a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$12$ |
$7$ |
2.2.4.12a1.2 |
$[2, 2, \frac{5}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$2$ |
$9$ |
$12$ |
$3$ |
$3$ |
$100\%$ |
$1$ |
2.2.4.12a1.3-1.2.4a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$12$ |
$7$ |
2.2.4.12a1.3 |
$[2, 2, \frac{5}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$2$ |
$6$ |
$12$ |
$3/2$ |
$3/2$ |
$100\%$ |
$1$ |
2.2.4.12a2.1-1.2.4a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$12$ |
$7$ |
2.2.4.12a2.1 |
$[2, 2, \frac{5}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$2$ |
$24$ |
$12$ |
$12$ |
$12$ |
$100\%$ |
$1$ |
2.2.4.12a3.1-1.2.4a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$12$ |
$7$ |
2.2.4.12a3.1 |
$[2, 2, \frac{5}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$2$ |
$14$ |
$12$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
2.2.4.12a4.1-1.2.4a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$12$ |
$7$ |
2.2.4.12a4.1 |
$[2, 2, \frac{5}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$2$ |
$14$ |
$12$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
2.2.4.12a4.2-1.2.4a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$12$ |
$7$ |
2.2.4.12a4.2 |
$[2, 2, \frac{5}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$2$ |
$14$ |
$12$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
2.2.4.12a5.1-1.2.4a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$12$ |
$7$ |
2.2.4.12a5.1 |
$[2, 2, \frac{5}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$2$ |
$24$ |
$12$ |
$12$ |
$12$ |
$100\%$ |
$1$ |
2.2.4.12a6.1-1.2.4a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$12$ |
$7$ |
2.2.4.12a6.1 |
$[2, 2, \frac{5}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$2$ |
$14$ |
$12$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
2.2.4.12a6.2-1.2.4a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$12$ |
$7$ |
2.2.4.12a6.2 |
$[2, 2, \frac{5}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$2$ |
$14$ |
$12$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
2.2.4.12a7.1-1.2.4a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$12$ |
$7$ |
2.2.4.12a7.1 |
$[2, 2, \frac{5}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$2$ |
$14$ |
$12$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
2.2.4.12a7.2-1.2.4a |
$2$ |
$2$ |
$8$ |
$16$ |
$1$ |
$2$ |
$2$ |
$2$ |
$4$ |
$8$ |
$4$ |
$12$ |
$7$ |
2.2.4.12a7.2 |
$[2, 2, \frac{5}{2}]$ |
$[3]$ |
$\langle\frac{3}{2}\rangle$ |
$(3)$ |
$x^2 + (b_{5} \pi^3 + a_{3} \pi^2) x + c_{6} \pi^4 + \pi$ |
$2$ |
$14$ |
$12$ |
$6$ |
$6$ |
$100\%$ |
$1$ |
2.1.8.16c1.1-2.1.0a |
$2$ |
$2$ |
$8$ |
$16$ |
$2$ |
$1$ |
$2$ |
$1$ |
$8$ |
$8$ |
$0$ |
$16$ |
$18$ |
2.1.8.16c1.1 |
$[2, 2, \frac{5}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$2$ |
$1$ |
$1$ |
$1/8$ |
$1/8$ |
$100\%$ |
$0$ |
2.1.8.16c1.2-2.1.0a |
$2$ |
$2$ |
$8$ |
$16$ |
$2$ |
$1$ |
$2$ |
$1$ |
$8$ |
$8$ |
$0$ |
$16$ |
$18$ |
2.1.8.16c1.2 |
$[2, 2, \frac{5}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$2$ |
$1$ |
$1$ |
$1/8$ |
$1/8$ |
$100\%$ |
$0$ |
2.1.8.16c1.3-2.1.0a |
$2$ |
$2$ |
$8$ |
$16$ |
$2$ |
$1$ |
$2$ |
$1$ |
$8$ |
$8$ |
$0$ |
$16$ |
$18$ |
2.1.8.16c1.3 |
$[2, 2, \frac{5}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$2$ |
$1$ |
$1$ |
$1/4$ |
$1/16$ |
$25.00\%$ |
$0$ |
2.1.8.16c1.4-2.1.0a |
$2$ |
$2$ |
$8$ |
$16$ |
$2$ |
$1$ |
$2$ |
$1$ |
$8$ |
$8$ |
$0$ |
$16$ |
$18$ |
2.1.8.16c1.4 |
$[2, 2, \frac{5}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$2$ |
$1$ |
$1$ |
$1/8$ |
$1/8$ |
$100\%$ |
$0$ |
2.1.8.16c1.5-2.1.0a |
$2$ |
$2$ |
$8$ |
$16$ |
$2$ |
$1$ |
$2$ |
$1$ |
$8$ |
$8$ |
$0$ |
$16$ |
$18$ |
2.1.8.16c1.5 |
$[2, 2, \frac{5}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$2$ |
$1$ |
$1$ |
$1/8$ |
$1/8$ |
$100\%$ |
$0$ |
2.1.8.16c1.6-2.1.0a |
$2$ |
$2$ |
$8$ |
$16$ |
$2$ |
$1$ |
$2$ |
$1$ |
$8$ |
$8$ |
$0$ |
$16$ |
$18$ |
2.1.8.16c1.6 |
$[2, 2, \frac{5}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$2$ |
$1$ |
$1$ |
$1/4$ |
$1/16$ |
$25.00\%$ |
$0$ |
2.1.8.16c2.1-2.1.0a |
$2$ |
$2$ |
$8$ |
$16$ |
$2$ |
$1$ |
$2$ |
$1$ |
$8$ |
$8$ |
$0$ |
$16$ |
$18$ |
2.1.8.16c2.1 |
$[2, 2, \frac{5}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$2$ |
$1$ |
$1$ |
$1/4$ |
$1/4$ |
$100\%$ |
$0$ |
2.1.8.16c2.2-2.1.0a |
$2$ |
$2$ |
$8$ |
$16$ |
$2$ |
$1$ |
$2$ |
$1$ |
$8$ |
$8$ |
$0$ |
$16$ |
$18$ |
2.1.8.16c2.2 |
$[2, 2, \frac{5}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$2$ |
$1$ |
$1$ |
$1/4$ |
$1/4$ |
$100\%$ |
$0$ |
2.1.8.16c2.3-2.1.0a |
$2$ |
$2$ |
$8$ |
$16$ |
$2$ |
$1$ |
$2$ |
$1$ |
$8$ |
$8$ |
$0$ |
$16$ |
$18$ |
2.1.8.16c2.3 |
$[2, 2, \frac{5}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$2$ |
$1$ |
$1$ |
$1/4$ |
$1/4$ |
$100\%$ |
$0$ |
2.1.8.16c2.4-2.1.0a |
$2$ |
$2$ |
$8$ |
$16$ |
$2$ |
$1$ |
$2$ |
$1$ |
$8$ |
$8$ |
$0$ |
$16$ |
$18$ |
2.1.8.16c2.4 |
$[2, 2, \frac{5}{2}]$ |
$[ ]$ |
$\langle \rangle$ |
$( )$ |
$x$ |
$2$ |
$1$ |
$1$ |
$1/4$ |
$1/4$ |
$100\%$ |
$0$ |