Properties

Label 2.1.8.16c1.1
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(16\)
Galois group $C_4\wr C_2$ (as 8T17)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 2 x^{6} + 4 x + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_4$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2, \frac{5}{2}]$
Visible Swan slopes:$[1,1,\frac{3}{2}]$
Means:$\langle\frac{1}{2}, \frac{3}{4}, \frac{9}{8}\rangle$
Rams:$(1, 1, 3)$
Jump set:$[1, 3, 9, 17]$
Roots of unity:$4 = 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{-1})$, 2.1.4.6a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 2 x^{6} + 4 x + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^6 + 1$,$z + 1$
Associated inertia:$2$,$1$
Indices of inseparability:$[9, 6, 6, 0]$

Invariants of the Galois closure

Galois degree: $32$
Galois group: $C_4\wr C_2$ (as 8T17)
Inertia group: $Q_8$ (as 8T5)
Wild inertia group: $Q_8$
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, \frac{5}{2}]$
Galois Swan slopes: $[1,1,\frac{3}{2}]$
Galois mean slope: $2.0$
Galois splitting model:$x^{8} - 2 x^{4} + 5$