Defining polynomial
\(x^{8} + 2 x^{6} + 4 x + 2\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $8$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $16$ |
Discriminant root field: | $\Q_{2}(\sqrt{5})$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$: | $C_4$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[2, 2, \frac{5}{2}]$ |
Visible Swan slopes: | $[1,1,\frac{3}{2}]$ |
Means: | $\langle\frac{1}{2}, \frac{3}{4}, \frac{9}{8}\rangle$ |
Rams: | $(1, 1, 3)$ |
Jump set: | $[1, 3, 9, 17]$ |
Roots of unity: | $4 = 2^{ 2 }$ |
Intermediate fields
$\Q_{2}(\sqrt{-1})$, 2.1.4.6a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{8} + 2 x^{6} + 4 x + 2 \)
|
Ramification polygon
Residual polynomials: | $z^6 + 1$,$z + 1$ |
Associated inertia: | $2$,$1$ |
Indices of inseparability: | $[9, 6, 6, 0]$ |
Invariants of the Galois closure
Galois degree: | $32$ |
Galois group: | $C_4\wr C_2$ (as 8T17) |
Inertia group: | $Q_8$ (as 8T5) |
Wild inertia group: | $Q_8$ |
Galois unramified degree: | $4$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 2, \frac{5}{2}]$ |
Galois Swan slopes: | $[1,1,\frac{3}{2}]$ |
Galois mean slope: | $2.0$ |
Galois splitting model: | $x^{8} - 2 x^{4} + 5$ |