Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label $p$ $n$ $f$ $e$ $c$ Base Abs. Artin slopes Swan slopes Means Rams Generic poly Ambiguity Field count Mass
2.1.32.62ba $2$ $32$ $1$ $32$ $62$ $\Q_{2}$ $[\frac{4}{3}, \frac{4}{3}, 2, \frac{25}{12}, \frac{25}{12}]$ $[\frac{1}{3}, \frac{1}{3}, 1, \frac{13}{12}, \frac{13}{12}]$ $\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}, \frac{41}{48}, \frac{31}{32}\rangle$ $(\frac{1}{3}, \frac{1}{3}, 3, \frac{11}{3}, \frac{11}{3})$ $x^{32} + 2 a_{31} x^{31} + 2 b_{30} x^{30} + 2 b_{28} x^{28} + 2 a_{20} x^{20} + 2 a_{8} x^8 + 4 b_{34} x^2 + 4 b_{33} x + 4 c_{32} + 2$ $2$ $0$ $16$
2.1.2.2a1.1-1.16.30e $2$ $16$ $1$ $16$ $30$ $\Q_{2}(\sqrt{-1})$ $[\frac{4}{3}, \frac{4}{3}, 2, \frac{25}{12}, \frac{25}{12}]$ $[\frac{1}{3}, \frac{1}{3}, \frac{7}{6}, \frac{7}{6}]$ $\langle\frac{1}{6}, \frac{1}{4}, \frac{17}{24}, \frac{15}{16}\rangle$ $(\frac{1}{3}, \frac{1}{3}, \frac{11}{3}, \frac{11}{3})$ $x^{16} + a_{15} \pi x^{15} + b_{14} \pi x^{14} + a_{4} \pi x^4 + b_{18} \pi^2 x^2 + b_{17} \pi^2 x + \pi$ $1$ $0$ $8$
2.1.2.2a1.2-1.16.30e $2$ $16$ $1$ $16$ $30$ $\Q_{2}(\sqrt{-5})$ $[\frac{4}{3}, \frac{4}{3}, 2, \frac{25}{12}, \frac{25}{12}]$ $[\frac{1}{3}, \frac{1}{3}, \frac{7}{6}, \frac{7}{6}]$ $\langle\frac{1}{6}, \frac{1}{4}, \frac{17}{24}, \frac{15}{16}\rangle$ $(\frac{1}{3}, \frac{1}{3}, \frac{11}{3}, \frac{11}{3})$ $x^{16} + a_{15} \pi x^{15} + b_{14} \pi x^{14} + a_{4} \pi x^4 + b_{18} \pi^2 x^2 + b_{17} \pi^2 x + \pi$ $1$ $0$ $8$
2.1.4.4a1.1-1.8.30h $2$ $8$ $1$ $8$ $30$ 2.1.4.4a1.1 $[\frac{4}{3}, \frac{4}{3}, 2, \frac{25}{12}, \frac{25}{12}]$ $[3, \frac{10}{3}, \frac{10}{3}]$ $\langle\frac{3}{2}, \frac{29}{12}, \frac{23}{8}\rangle$ $(3, \frac{11}{3}, \frac{11}{3})$ $x^8 + a_{23} \pi^3 x^7 + b_{22} \pi^3 x^6 + (b_{20} \pi^3 + a_{12} \pi^2) x^4 + b_{26} \pi^4 x^2 + b_{25} \pi^4 x + c_{24} \pi^4 + \pi$ $2$ $0$ $16$
2.1.8.12b1.1-1.4.14a $2$ $4$ $1$ $4$ $14$ 2.1.8.12b1.1 $[\frac{4}{3}, \frac{4}{3}, 2, \frac{25}{12}, \frac{25}{12}]$ $[\frac{11}{3}, \frac{11}{3}]$ $\langle\frac{11}{6}, \frac{11}{4}\rangle$ $(\frac{11}{3}, \frac{11}{3})$ $x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ $1$ $0$ $8$
2.1.8.12b1.2-1.4.14a $2$ $4$ $1$ $4$ $14$ 2.1.8.12b1.2 $[\frac{4}{3}, \frac{4}{3}, 2, \frac{25}{12}, \frac{25}{12}]$ $[\frac{11}{3}, \frac{11}{3}]$ $\langle\frac{11}{6}, \frac{11}{4}\rangle$ $(\frac{11}{3}, \frac{11}{3})$ $x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ $1$ $0$ $8$
2.1.8.12b1.3-1.4.14a $2$ $4$ $1$ $4$ $14$ 2.1.8.12b1.3 $[\frac{4}{3}, \frac{4}{3}, 2, \frac{25}{12}, \frac{25}{12}]$ $[\frac{11}{3}, \frac{11}{3}]$ $\langle\frac{11}{6}, \frac{11}{4}\rangle$ $(\frac{11}{3}, \frac{11}{3})$ $x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ $1$ $0$ $8$
2.1.8.12b1.4-1.4.14a $2$ $4$ $1$ $4$ $14$ 2.1.8.12b1.4 $[\frac{4}{3}, \frac{4}{3}, 2, \frac{25}{12}, \frac{25}{12}]$ $[\frac{11}{3}, \frac{11}{3}]$ $\langle\frac{11}{6}, \frac{11}{4}\rangle$ $(\frac{11}{3}, \frac{11}{3})$ $x^4 + a_{11} \pi^3 x^3 + (b_{14} \pi^4 + b_{10} \pi^3) x^2 + b_{13} \pi^4 x + \pi$ $1$ $0$ $8$
  displayed columns for results