Properties

Label 2.1.8.12b1.1
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(12\)
Galois group $\textrm{GL(2,3)}$ (as 8T23)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 2 x^{5} + 2 x^{2} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{4}{3}, \frac{4}{3}, 2]$
Visible Swan slopes:$[\frac{1}{3},\frac{1}{3},1]$
Means:$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$
Rams:$(\frac{1}{3}, \frac{1}{3}, 3)$
Jump set:$[1, 2, 5, 15]$
Roots of unity:$2$

Intermediate fields

2.1.4.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 2 x^{5} + 2 x^{2} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[5, 2, 2, 0]$

Invariants of the Galois closure

Galois degree: $48$
Galois group: $\GL(2,3)$ (as 8T23)
Inertia group: $\SL(2,3)$ (as 8T12)
Wild inertia group: $Q_8$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, 2]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},1]$
Galois mean slope: $1.5833333333333333$
Galois splitting model:$x^{8} - 6 x^{4} - 4 x^{2} - 3$