Defining polynomial
\(x^{8} + 2 x^{5} + 2 x^{2} + 2\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $8$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $12$ |
Discriminant root field: | $\Q_{2}(\sqrt{5})$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$: | $C_2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[\frac{4}{3}, \frac{4}{3}, 2]$ |
Visible Swan slopes: | $[\frac{1}{3},\frac{1}{3},1]$ |
Means: | $\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$ |
Rams: | $(\frac{1}{3}, \frac{1}{3}, 3)$ |
Jump set: | $[1, 2, 5, 15]$ |
Roots of unity: | $2$ |
Intermediate fields
2.1.4.4a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{8} + 2 x^{5} + 2 x^{2} + 2 \)
|
Ramification polygon
Residual polynomials: | $z^2 + 1$,$z + 1$ |
Associated inertia: | $1$,$1$ |
Indices of inseparability: | $[5, 2, 2, 0]$ |
Invariants of the Galois closure
Galois degree: | $48$ |
Galois group: | $\GL(2,3)$ (as 8T23) |
Inertia group: | $\SL(2,3)$ (as 8T12) |
Wild inertia group: | $Q_8$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $3$ |
Galois Artin slopes: | $[\frac{4}{3}, \frac{4}{3}, 2]$ |
Galois Swan slopes: | $[\frac{1}{3},\frac{1}{3},1]$ |
Galois mean slope: | $1.5833333333333333$ |
Galois splitting model: | $x^{8} - 6 x^{4} - 4 x^{2} - 3$ |