Learn more

Refine search


Results (1-50 of 521 matches)

Next   displayed columns for results
Label $p$ $n$ $f$ $e$ $c$ Base Abs. Artin slopes Swan slopes Means Rams Generic poly Ambiguity Field count Mass
2.1.32.142cy $2$ $32$ $1$ $32$ $142$ $\Q_{2}$ $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 2, 3, \frac{15}{4}, 4]$ $\langle\frac{1}{2}, \frac{5}{4}, \frac{17}{8}, \frac{47}{16}, \frac{111}{32}\rangle$ $(1, 3, 7, 13, 17)$ $x^{32} + 16 b_{127} x^{31} + 8 a_{94} x^{30} + 16 b_{125} x^{29} + 8 b_{92} x^{28} + 16 b_{123} x^{27} + 16 b_{121} x^{25} + (4 b_{56} + 16 c_{120}) x^{24} + 16 b_{119} x^{23} + 16 b_{118} x^{22} + 16 b_{117} x^{21} + 8 b_{84} x^{20} + 16 b_{115} x^{19} + 16 b_{114} x^{18} + 16 b_{113} x^{17} + 2 a_{16} x^{16} + 16 a_{111} x^{15} + 16 b_{110} x^{14} + 8 b_{76} x^{12} + 16 b_{106} x^{10} + 4 a_{40} x^8 + 16 b_{102} x^6 + 8 a_{68} x^4 + 16 b_{98} x^2 + 4 c_{32} + 8 c_{64} + 16 c_{96} + 32 c_{128} + 2$ $32$ $0$ $262144$
2.1.2.2a1.1-1.16.110bc $2$ $16$ $1$ $16$ $110$ $\Q_{2}(\sqrt{-1})$ $[2, 3, 4, \frac{19}{4}, 5]$ $[3, 5, \frac{13}{2}, 7]$ $\langle\frac{3}{2}, \frac{13}{4}, \frac{39}{8}, \frac{95}{16}\rangle$ $(3, 7, 13, 17)$ $x^{16} + (b_{111} \pi^7 + a_{95} \pi^6) x^{15} + (b_{94} \pi^6 + a_{78} \pi^5) x^{14} + b_{109} \pi^7 x^{13} + (b_{76} \pi^5 + b_{60} \pi^4) x^{12} + b_{107} \pi^7 x^{11} + b_{90} \pi^6 x^{10} + b_{105} \pi^7 x^9 + (c_{104} \pi^7 + b_{40} \pi^3 + a_{24} \pi^2) x^8 + b_{103} \pi^7 x^7 + (b_{102} \pi^7 + b_{86} \pi^6) x^6 + b_{101} \pi^7 x^5 + (b_{68} \pi^5 + a_{52} \pi^4) x^4 + b_{99} \pi^7 x^3 + (b_{98} \pi^7 + b_{82} \pi^6) x^2 + b_{97} \pi^7 x + c_{112} \pi^8 + c_{80} \pi^6 + c_{48} \pi^4 + \pi$ $16$ $0$ $262144$
2.1.2.2a1.2-1.16.110bc $2$ $16$ $1$ $16$ $110$ $\Q_{2}(\sqrt{-5})$ $[2, 3, 4, \frac{19}{4}, 5]$ $[3, 5, \frac{13}{2}, 7]$ $\langle\frac{3}{2}, \frac{13}{4}, \frac{39}{8}, \frac{95}{16}\rangle$ $(3, 7, 13, 17)$ $x^{16} + (b_{111} \pi^7 + a_{95} \pi^6) x^{15} + (b_{94} \pi^6 + a_{78} \pi^5) x^{14} + b_{109} \pi^7 x^{13} + (b_{76} \pi^5 + b_{60} \pi^4) x^{12} + b_{107} \pi^7 x^{11} + b_{90} \pi^6 x^{10} + b_{105} \pi^7 x^9 + (c_{104} \pi^7 + b_{40} \pi^3 + a_{24} \pi^2) x^8 + b_{103} \pi^7 x^7 + (b_{102} \pi^7 + b_{86} \pi^6) x^6 + b_{101} \pi^7 x^5 + (b_{68} \pi^5 + a_{52} \pi^4) x^4 + b_{99} \pi^7 x^3 + (b_{98} \pi^7 + b_{82} \pi^6) x^2 + b_{97} \pi^7 x + c_{112} \pi^8 + c_{80} \pi^6 + c_{48} \pi^4 + \pi$ $16$ $0$ $262144$
2.1.2.3a1.1-1.16.94bt $2$ $16$ $1$ $16$ $94$ $\Q_{2}(\sqrt{-2})$ $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 4, \frac{11}{2}, 6]$ $\langle\frac{1}{2}, \frac{9}{4}, \frac{31}{8}, \frac{79}{16}\rangle$ $(1, 7, 13, 17)$ $x^{16} + (b_{95} \pi^6 + a_{79} \pi^5) x^{15} + (b_{78} \pi^5 + a_{62} \pi^4) x^{14} + b_{93} \pi^6 x^{13} + (b_{60} \pi^4 + b_{44} \pi^3) x^{12} + b_{91} \pi^6 x^{11} + b_{74} \pi^5 x^{10} + b_{89} \pi^6 x^9 + (c_{88} \pi^6 + a_{8} \pi) x^8 + b_{87} \pi^6 x^7 + (b_{86} \pi^6 + b_{70} \pi^5) x^6 + b_{85} \pi^6 x^5 + (b_{52} \pi^4 + a_{36} \pi^3) x^4 + b_{83} \pi^6 x^3 + (b_{82} \pi^6 + b_{66} \pi^5) x^2 + b_{81} \pi^6 x + c_{96} \pi^7 + c_{64} \pi^5 + c_{16} \pi^2 + \pi$ $16$ $0$ $131072$
2.1.2.3a1.2-1.16.94bt $2$ $16$ $1$ $16$ $94$ $\Q_{2}(\sqrt{-2\cdot 5})$ $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 4, \frac{11}{2}, 6]$ $\langle\frac{1}{2}, \frac{9}{4}, \frac{31}{8}, \frac{79}{16}\rangle$ $(1, 7, 13, 17)$ $x^{16} + (b_{95} \pi^6 + a_{79} \pi^5) x^{15} + (b_{78} \pi^5 + a_{62} \pi^4) x^{14} + b_{93} \pi^6 x^{13} + (b_{60} \pi^4 + b_{44} \pi^3) x^{12} + b_{91} \pi^6 x^{11} + b_{74} \pi^5 x^{10} + b_{89} \pi^6 x^9 + (c_{88} \pi^6 + a_{8} \pi) x^8 + b_{87} \pi^6 x^7 + (b_{86} \pi^6 + b_{70} \pi^5) x^6 + b_{85} \pi^6 x^5 + (b_{52} \pi^4 + a_{36} \pi^3) x^4 + b_{83} \pi^6 x^3 + (b_{82} \pi^6 + b_{66} \pi^5) x^2 + b_{81} \pi^6 x + c_{96} \pi^7 + c_{64} \pi^5 + c_{16} \pi^2 + \pi$ $16$ $0$ $131072$
2.1.2.3a1.3-1.16.94bt $2$ $16$ $1$ $16$ $94$ $\Q_{2}(\sqrt{2})$ $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 4, \frac{11}{2}, 6]$ $\langle\frac{1}{2}, \frac{9}{4}, \frac{31}{8}, \frac{79}{16}\rangle$ $(1, 7, 13, 17)$ $x^{16} + (b_{95} \pi^6 + a_{79} \pi^5) x^{15} + (b_{78} \pi^5 + a_{62} \pi^4) x^{14} + b_{93} \pi^6 x^{13} + (b_{60} \pi^4 + b_{44} \pi^3) x^{12} + b_{91} \pi^6 x^{11} + b_{74} \pi^5 x^{10} + b_{89} \pi^6 x^9 + (c_{88} \pi^6 + a_{8} \pi) x^8 + b_{87} \pi^6 x^7 + (b_{86} \pi^6 + b_{70} \pi^5) x^6 + b_{85} \pi^6 x^5 + (b_{52} \pi^4 + a_{36} \pi^3) x^4 + b_{83} \pi^6 x^3 + (b_{82} \pi^6 + b_{66} \pi^5) x^2 + b_{81} \pi^6 x + c_{96} \pi^7 + c_{64} \pi^5 + c_{16} \pi^2 + \pi$ $16$ $0$ $131072$
2.1.2.3a1.4-1.16.94bt $2$ $16$ $1$ $16$ $94$ $\Q_{2}(\sqrt{2\cdot 5})$ $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 4, \frac{11}{2}, 6]$ $\langle\frac{1}{2}, \frac{9}{4}, \frac{31}{8}, \frac{79}{16}\rangle$ $(1, 7, 13, 17)$ $x^{16} + (b_{95} \pi^6 + a_{79} \pi^5) x^{15} + (b_{78} \pi^5 + a_{62} \pi^4) x^{14} + b_{93} \pi^6 x^{13} + (b_{60} \pi^4 + b_{44} \pi^3) x^{12} + b_{91} \pi^6 x^{11} + b_{74} \pi^5 x^{10} + b_{89} \pi^6 x^9 + (c_{88} \pi^6 + a_{8} \pi) x^8 + b_{87} \pi^6 x^7 + (b_{86} \pi^6 + b_{70} \pi^5) x^6 + b_{85} \pi^6 x^5 + (b_{52} \pi^4 + a_{36} \pi^3) x^4 + b_{83} \pi^6 x^3 + (b_{82} \pi^6 + b_{66} \pi^5) x^2 + b_{81} \pi^6 x + c_{96} \pi^7 + c_{64} \pi^5 + c_{16} \pi^2 + \pi$ $16$ $0$ $131072$
2.1.4.8b1.1-1.8.78m $2$ $8$ $1$ $8$ $78$ 2.1.4.8b1.1 $[2, 3, 4, \frac{19}{4}, 5]$ $[7, 10, 11]$ $\langle\frac{7}{2}, \frac{27}{4}, \frac{71}{8}\rangle$ $(7, 13, 17)$ $x^8 + (b_{87} \pi^{11} + b_{79} \pi^{10} + a_{71} \pi^9) x^7 + (b_{78} \pi^{10} + b_{70} \pi^9 + b_{62} \pi^8 + a_{54} \pi^7) x^6 + (b_{85} \pi^{11} + b_{77} \pi^{10}) x^5 + (b_{52} \pi^7 + b_{44} \pi^6 + b_{36} \pi^5 + a_{28} \pi^4) x^4 + (b_{83} \pi^{11} + b_{75} \pi^{10}) x^3 + (b_{74} \pi^{10} + b_{66} \pi^9 + b_{58} \pi^8) x^2 + (b_{81} \pi^{11} + b_{73} \pi^{10}) x + c_{88} \pi^{12} + c_{80} \pi^{11} + c_{56} \pi^8 + \pi$ $8$ $0$ $131072$
2.1.4.8b1.2-1.8.78m $2$ $8$ $1$ $8$ $78$ 2.1.4.8b1.2 $[2, 3, 4, \frac{19}{4}, 5]$ $[7, 10, 11]$ $\langle\frac{7}{2}, \frac{27}{4}, \frac{71}{8}\rangle$ $(7, 13, 17)$ $x^8 + (b_{87} \pi^{11} + b_{79} \pi^{10} + a_{71} \pi^9) x^7 + (b_{78} \pi^{10} + b_{70} \pi^9 + b_{62} \pi^8 + a_{54} \pi^7) x^6 + (b_{85} \pi^{11} + b_{77} \pi^{10}) x^5 + (b_{52} \pi^7 + b_{44} \pi^6 + b_{36} \pi^5 + a_{28} \pi^4) x^4 + (b_{83} \pi^{11} + b_{75} \pi^{10}) x^3 + (b_{74} \pi^{10} + b_{66} \pi^9 + b_{58} \pi^8) x^2 + (b_{81} \pi^{11} + b_{73} \pi^{10}) x + c_{88} \pi^{12} + c_{80} \pi^{11} + c_{56} \pi^8 + \pi$ $8$ $0$ $131072$
2.1.4.8b1.3-1.8.78m $2$ $8$ $1$ $8$ $78$ 2.1.4.8b1.3 $[2, 3, 4, \frac{19}{4}, 5]$ $[7, 10, 11]$ $\langle\frac{7}{2}, \frac{27}{4}, \frac{71}{8}\rangle$ $(7, 13, 17)$ $x^8 + (b_{87} \pi^{11} + b_{79} \pi^{10} + a_{71} \pi^9) x^7 + (b_{78} \pi^{10} + b_{70} \pi^9 + b_{62} \pi^8 + a_{54} \pi^7) x^6 + (b_{85} \pi^{11} + b_{77} \pi^{10}) x^5 + (b_{52} \pi^7 + b_{44} \pi^6 + b_{36} \pi^5 + a_{28} \pi^4) x^4 + (b_{83} \pi^{11} + b_{75} \pi^{10}) x^3 + (b_{74} \pi^{10} + b_{66} \pi^9 + b_{58} \pi^8) x^2 + (b_{81} \pi^{11} + b_{73} \pi^{10}) x + c_{88} \pi^{12} + c_{80} \pi^{11} + c_{56} \pi^8 + \pi$ $8$ $0$ $131072$
2.1.4.8b1.4-1.8.78m $2$ $8$ $1$ $8$ $78$ 2.1.4.8b1.4 $[2, 3, 4, \frac{19}{4}, 5]$ $[7, 10, 11]$ $\langle\frac{7}{2}, \frac{27}{4}, \frac{71}{8}\rangle$ $(7, 13, 17)$ $x^8 + (b_{87} \pi^{11} + b_{79} \pi^{10} + a_{71} \pi^9) x^7 + (b_{78} \pi^{10} + b_{70} \pi^9 + b_{62} \pi^8 + a_{54} \pi^7) x^6 + (b_{85} \pi^{11} + b_{77} \pi^{10}) x^5 + (b_{52} \pi^7 + b_{44} \pi^6 + b_{36} \pi^5 + a_{28} \pi^4) x^4 + (b_{83} \pi^{11} + b_{75} \pi^{10}) x^3 + (b_{74} \pi^{10} + b_{66} \pi^9 + b_{58} \pi^8) x^2 + (b_{81} \pi^{11} + b_{73} \pi^{10}) x + c_{88} \pi^{12} + c_{80} \pi^{11} + c_{56} \pi^8 + \pi$ $8$ $0$ $131072$
2.1.4.8b1.5-1.8.78m $2$ $8$ $1$ $8$ $78$ 2.1.4.8b1.5 $[2, 3, 4, \frac{19}{4}, 5]$ $[7, 10, 11]$ $\langle\frac{7}{2}, \frac{27}{4}, \frac{71}{8}\rangle$ $(7, 13, 17)$ $x^8 + (b_{87} \pi^{11} + b_{79} \pi^{10} + a_{71} \pi^9) x^7 + (b_{78} \pi^{10} + b_{70} \pi^9 + b_{62} \pi^8 + a_{54} \pi^7) x^6 + (b_{85} \pi^{11} + b_{77} \pi^{10}) x^5 + (b_{52} \pi^7 + b_{44} \pi^6 + b_{36} \pi^5 + a_{28} \pi^4) x^4 + (b_{83} \pi^{11} + b_{75} \pi^{10}) x^3 + (b_{74} \pi^{10} + b_{66} \pi^9 + b_{58} \pi^8) x^2 + (b_{81} \pi^{11} + b_{73} \pi^{10}) x + c_{88} \pi^{12} + c_{80} \pi^{11} + c_{56} \pi^8 + \pi$ $8$ $0$ $131072$
2.1.4.8b1.6-1.8.78m $2$ $8$ $1$ $8$ $78$ 2.1.4.8b1.6 $[2, 3, 4, \frac{19}{4}, 5]$ $[7, 10, 11]$ $\langle\frac{7}{2}, \frac{27}{4}, \frac{71}{8}\rangle$ $(7, 13, 17)$ $x^8 + (b_{87} \pi^{11} + b_{79} \pi^{10} + a_{71} \pi^9) x^7 + (b_{78} \pi^{10} + b_{70} \pi^9 + b_{62} \pi^8 + a_{54} \pi^7) x^6 + (b_{85} \pi^{11} + b_{77} \pi^{10}) x^5 + (b_{52} \pi^7 + b_{44} \pi^6 + b_{36} \pi^5 + a_{28} \pi^4) x^4 + (b_{83} \pi^{11} + b_{75} \pi^{10}) x^3 + (b_{74} \pi^{10} + b_{66} \pi^9 + b_{58} \pi^8) x^2 + (b_{81} \pi^{11} + b_{73} \pi^{10}) x + c_{88} \pi^{12} + c_{80} \pi^{11} + c_{56} \pi^8 + \pi$ $8$ $0$ $131072$
2.1.4.11a1.1-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.1 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.2-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.2 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.3-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.3 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.4-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.4 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.5-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.5 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.6-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.6 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.7-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.7 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.8-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.8 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.9-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.9 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.10-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.10 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.11-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.11 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.12-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.12 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.13-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.13 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.14-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.14 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.15-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.15 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.16-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.16 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.17-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.17 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.18-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.18 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.19-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.19 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.4.11a1.20-1.8.54n $2$ $8$ $1$ $8$ $54$ 2.1.4.11a1.20 $[2, 3, 4, \frac{19}{4}, 5]$ $[1, 7, 8]$ $\langle\frac{1}{2}, \frac{15}{4}, \frac{47}{8}\rangle$ $(1, 13, 17)$ $x^8 + (b_{63} \pi^8 + b_{55} \pi^7 + a_{47} \pi^6) x^7 + (b_{54} \pi^7 + b_{46} \pi^6 + b_{38} \pi^5 + a_{30} \pi^4) x^6 + (b_{61} \pi^8 + b_{53} \pi^7) x^5 + a_{4} \pi x^4 + (b_{59} \pi^8 + b_{51} \pi^7) x^3 + (b_{50} \pi^7 + b_{42} \pi^6 + b_{34} \pi^5) x^2 + (b_{57} \pi^8 + b_{49} \pi^7) x + c_{64} \pi^9 + c_{56} \pi^8 + c_{8} \pi^2 + \pi$ $8$ $0$ $16384$
2.1.8.24c1.1-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.1 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
2.1.8.24c1.2-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.2 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
2.1.8.24c1.3-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.3 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
2.1.8.24c1.4-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.4 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
2.1.8.24c1.5-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.5 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
2.1.8.24c1.6-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.6 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
2.1.8.24c1.7-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.7 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
2.1.8.24c1.8-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.8 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
2.1.8.24c1.9-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.9 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
2.1.8.24c1.10-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.10 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
2.1.8.24c1.11-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.11 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
2.1.8.24c1.12-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.12 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
2.1.8.24c1.13-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.13 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
2.1.8.24c1.14-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.14 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
2.1.8.24c1.15-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.15 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
2.1.8.24c1.16-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.16 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
2.1.8.24c1.17-1.4.46e $2$ $4$ $1$ $4$ $46$ 2.1.8.24c1.17 $[2, 3, 4, \frac{19}{4}, 5]$ $[13, 15]$ $\langle\frac{13}{2}, \frac{43}{4}\rangle$ $(13, 17)$ $x^4 + (b_{59} \pi^{15} + b_{55} \pi^{14} + b_{51} \pi^{13} + b_{47} \pi^{12} + a_{43} \pi^{11}) x^3 + (b_{50} \pi^{13} + b_{46} \pi^{12} + b_{42} \pi^{11} + b_{38} \pi^{10} + b_{34} \pi^9 + b_{30} \pi^8 + a_{26} \pi^7) x^2 + (b_{57} \pi^{15} + b_{53} \pi^{14} + b_{49} \pi^{13} + b_{45} \pi^{12}) x + c_{60} \pi^{16} + c_{52} \pi^{14} + \pi$ $4$ $0$ $16384$
Next   displayed columns for results